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GENERAL mTRODUCTION 

Organization of the Dissertation 

This dissertation introduces and tests three new heuristics and two random problem 

generators. These heuristics and problem generators are associated with smgle and multiple 

echelon, dynamic, capacitated lot sizing problems, with or without setup times. 

The development, application and testing of these heuristics and generators are described in 

the four papers contained in Chapters I, II, III and IV. 

The first paper discusses extensions to the basic Dixon and Silver (DS) heuristic that 

allow for improved solutions at a minor computational increase. These extensions include the 

use of newly developed perturbation factors and improvement algorithms. This paper was 

accepted for publication in the 3rd Annual Industrial Engineering Research Conference 

Proceedings and was presented at the Atlanta (GA) conference in May, 1994. 

The second paper is associated with the development and testing of a new, single 

echelon heuristic, called the MG heuristic. This heuristic, unlike the DS heuristic, is capable 

of solving problems that include significant levels of setup time. Furthermore, unlike 

heuristics that use Lagrangean relaxation with subgradient optimization, it is a fast heuristic. 

Additionally, the second paper describes an extensively modified, single echelon, random 

problem generator. This paper is currently under review by the Computers and Industrial 

Engineering ]o\xxmX. 

The third paper provides additional test results associated with the MG heuristic and 

further specifi:cs relating to the single echelon random problem generator. This paper will be 

presented at the 4 A Annual Industrial Engineering Research Conference in Nashville (TN), 

May, 1995, and is pending publication in the conference proceedings. 
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The final paper deals with a new heuristic solution methodology that is directed towards 

solving multiple echelon problems with assembly product structures, with allowances for 

setup times and capacity constraints on one or more echelons. This paper is in review by the 

scheduling and logistics focus area of the HE Trcmsactions]o\xmaX. 

The heuristic discussed in the fourth and final paper is a practical heuristic that integrates 

many of the findings and methodologies discussed in the first three papers. Thus, it uses a 

sequential, top down approach that uses the single echelon MG heuristic and could be 

modified for implementation into existing MRP production planning systems. This new, 

multiple echelon heuristic, called the MELS heuristic, incorporates: (a) two different item cost 

adjustment methodologies; (b) an upward adjustment (feedback) methodology that is used by 

the heuristic when higher echelon lot sizing decisions "overload" the capacity constraint of a 

lower echelon; and (c) a search procedure (i.e., simulated annealing) for optimizing the 

holding cost adjustment factor used for each echelon. Additionally, the fourth paper provides: 

(1) a mathematical definition of the multiple echelon problem; (2) an introduction and 

description of a new, multiple echelon, random problem generator; (3) insight into the cause 

and magnitude of cost penalties that are incurred when inter-echelon cost impacts are ignored; 

(4) indications regarding the effectiveness of item cost adjustments; and (5) a brief 

introduction to simulated armealing, as well as a description of its application to multiple 

echelon lot sizing. 

In this dissertation, the Background, Literature Review and Motivations subsections 

are first presented prior to the incorporation of the four papers discussed above. In these 

subsections, the references cited refer to those that are listed at the end of the dissertation in 

the Bibliography section. Additional references are listed at the end of each paper (chapter). 
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Background 

The Capacitated Lot Sizing Problem (CLSP) is a common and important industrial 

inventory control problem that involves determining medium-range production plarming lot 

sizes for items that share a common capacity constraint. It is a single echelon problem that 

consists of scheduling for multiple periods the production timing and quantity of multiple 

items so as to minimize the sum of both setup and linear holding costs while satisfying 

demands, without backlogs, and adhering to the capacity constraint. The capacity constraint 

and product demands may be time-varying (dynamic), but are assumed to be deterministic, 

even though they are often based on forecasts. Furthermore, item setup costs are incurred in 

each period that a particular item is produced. Additionally, the problem is significantly 

complicated by the inclusion of positive item setup times (which consume capacity). 

However, CLSP considers only lot sizing decisions, not short term job sequencing. 

Another major complication is associated with multiple echelon, capacitated lot sizing 

problems, i.e., when the lot size decision made at one echelon of the manufacturing process 

(e.g., assembly) critically affects inter-related lot sizing decisions required at a lower echelon 

(e.g., fabrication). These types of problems have been referred to as 'cascading lot sizing 

problems'. A multiple item, Material Requirements Planning (MRP) environment associated 

with a job shop manufacturing firm having multiple, interdependent work centers using a 

medium-range planning horizon and relatively long planning periods (weekly or monthly) is 

one example where these types of lot sizing problems must routinely be solved. 

These types of production planning problems are extremely complex. The single item, 

single stage, non-capacitated version of the problem without setup times can be solved 

efficiently using Wagner and Whitin's methodology (1958), but just adding a capacity 

constraint converts the problem to one that is NP-hard, Dixon (1979). Consequently, 
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both single and multiple echelon CLSP research attention has primarily focused on the 

development of heuristics rather than optimization methodologies. As a result, over the last 

twenty years, a number of heuristics have been developed. However, until just recently, much 

of the complexity of the general lot sizing problem has been neglected (e.g. positive setup 

times, multiple echelons, etc.). And currently, there does not exist a heuristic methodology 

which has been designed to handle the general lot sizing environment described above. 

Determining if problems are feasible is a major complication of dealing with positive 

setup times — the issue of determining feasibility in this environment is an NP-Complete 

problem, Trigeiro et al. (1989). Consequently, few researchers have studied these types of 

problems—even just measuring how well a particular heuristic finds feasible solutions is a 

difficult task, without considering the quality of its solutions (w.r.t. cost). 

At the start of dissertation research, the Lagrangean relaxation heuristic of Diaby et al. 

(1992a; 1992b) appeared to offer significant potential for solving single echelon problems, 

with or without setup tunes and overtime. However, after spending a significant amount of 

time working with the FORTRAN code supplied by the primary author, it was concluded that 

their approach is not robust over a wide variety of problem characteristics — their 

methodology often would not generate a solution to problems that were shov^Ti to be feasible 

by other, more robust lot sizing procedures, e.g., the TTM heuristic of Trigeiro et al., (1989). 

This was discussed with the primary author and several randomly generated test problems 

were provided to him as examples. 

Literature Review 

In just the last twenty years, many dozens of articles have been written relating to single 

and multiple echelon, dynamic, capacitated lot sizing. An overview of some of the most 

relevant, recent articles is provided below. 
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In 1975, Eisenhut extended the well-known Silver-Meal heuristic to solve single 

echelon, capacitated, multi-item problems. Lambrecht and VanderVeken (1979) extended the 

work of Eisenhut and developed a heuristic that guarantees feasibility (if feasibility is possible) 

of the resulting lot-sizing solution. In 1981, Dixon and Silver published a relatively simple 

(and fast), 'greedy' heuristic that built upon previous enhancements to the Silver-Meal 

heuristic and uses a forward look-ahead to ensure feasibility. Since then, this heuristic has 

received considerable, favorable attention as both a stand-alone solution methodology and as a 

starting point for more complicated, computationally expensive methodologies. For example, 

both the Thizy and Van Wassenhove (1985) and Diaby et al. (1992a and 1992b) Lagrangean 

relaxation approaches use Dixon and Silver's solution to initialize dual costs associated with a 

transportation network formulation of the lot sizing problem. Additionally, other available, 

less well established heuristics that are somewhat competitive with Dixon and Silver's heuristic 

include the DPA (Dogramaci et al. 1981) and the ABCX (Maes and Van Wassenhove 1986) 

heuristics. And finally, Trigeiro's Dual Cost Heuristic (1989) is noteworthy because it, along 

with Diaby's Heuristic, is one of the few heuristics that permit the inclusion of significant 

product set up times. Of these methodologies, all are related to single echelon models. 

For general reviews of the research related to multiple echelon production-inventory 

systems, see Collier (1982) and Goyal/Gunasekaran (1990). (Note; In place of the word 

'echelon' some papers and dissertations use the words 'stage' or 'level'.) The following 

paragraphs will briefly discuss a few of the key heuristic methodologies. 

Regardmg heuristic methodologies for multiple echelon, non-capacitated lot sizing of 

products with time varying demand, a number of researchers have proposed sequential lot 

sizing heuristics that compute lot sizes one echelon at a time. Among these researchers are 

McLaren (1976), McLaren and Whybark (1976), Biggs et al (1977), Graves (1981), Peng 

(1985), and Blackburn and Millen (1982,1984, & 1985). Rather than ignore upper and/or 
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lower echelon impacts (as is conunonly done in mdustrial practice), these heuristics use 

adjusted setup and holding costs that partially take into account the eSect that a lot sizing 

decision made at one stage has on the other stages in the system. The major weaknesses of all 

these heuristics are their inability to include multiple items (products) with shared capacity 

constraints, their limitations on acceptable product structures (e.g., part commonality causes 

problems), and their omission of setup times. However, if shared capacity constraints are 

non-binding and product structures are acceptable, the use of any of the above multiple 

echelon heuristics, rather than simply using a single echelon heuristic iteratively down the 

product structure, will usually lead to significantly improved cost performance (e.g., a 5% to 

15% reduction). Furthermore, Gupta and Keung (1990) concluded that Blackburn and 

Millen's approach is the most computationally effective, sequential lot sizing technique. 

Finally, Afentakis (1987) and Roundy (1993) have been active multiple echelon, CLSP 

researchers, but their approaches do not consider capacity constraints. 

Research on the capacity constrained version of the multiple echelon, multiple item, 

dynamic demand CLSP problem has been relatively limited in comparison with the amount of 

research directed towards non-capacitated problems. Much of the research to date has 

focused on mathematical programming formulations of the problem. For example, Steinberg 

and Napier (1980) suggest a generalized network formulation, but their approach is only 

appropriate for very small product structures due to the very high computational requirements 

of mixed integer programming. This limitation also applies to the work of Billington (1983), 

which has the additional limitation of not allowing for setup costs. Additionally, Bahl and 

Ritzman (1984) also used a mathematical programming approach, but it simplifies the 

problem by usmg only fixed ordering interval schedules and its solution procedures will 

generate production schedules with fi-actional production setups. 
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Lambrecht and VanderEecken (1978) developed an algorithm, but it is applicable only 

to serial, single end item systems where the capacity constraint is binding on just the end item. 

Ramsay and Rardin (1983) also developed four different heuristics for serial systems. Their 

approaches allow multiple capacity constraints, but they utilize some very restrictive 

assumptions that are not consistent with realistic production environments. Blackburn and 

Millen (1984) developed a heuristic that is applicable to both serial and assembly systems with 

a single end item and allows capacity constraints on all stages, but the constraints must be 

constant (not time varying). Maes and Van Wassenhove (1991) use the cost modifications of 

Blackburn and Millen to solve multiple item, multi-capacitated, lot sizing problems in a serial 

production environment under dynamic demand conditions. Their results were mixed for the 

small test problems utilized. Consequently, they acknowledged a need to investigate other 

capacitated cost modification procedures and extend the testing to include larger problems 

which more closely approximate industry environments. Also, all the above approaches are 

limited by their inability to handle setup times. 

Kuik et al.(I993) proposed linear programming (LP), simulated annealing (SA) and 

Tabu Search (TS) heuristics for solving lot sizing problems relating to assembly systems. In 

their study, they reduced the overall problem complexity by limiting the production structures 

to six or seven items spread over three echelons, only the middle echelon was capacitated, all 

three levels used the same time between order (TBO) levels (either 2, 3, or 4) to generate item 

setup costs, and no setup times were allowed. They concluded that the TS and SA heuristics 

outperformed the LP heuristics and that SA slightly outperformed TS. However, for even 

their fastest heuristic, the six and seven item problems averaged about 90 to 100 seconds of 

Sun 3 workstation CPU time. With respect to solution quality, the best method (SA) 

generated solutions that averaged 12 to 23 percent above the lower bound obtained by solving 
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the LP relaxation of the problem. No comparison to resuhs obtained with single level 

heuristics was provided. 

In Billington et al. (1994) the authors study capacitated multiple echelon serial systems 

and solve associated lot sizing problems using modified single echelon heuristics such as 

Dbcon and Silver that are applied sequentially to each production echelon (top down). They 

modified the single level heuristics' feasibility routines to work in muUiple echelon 

environments and used several of the Blackburn and Millen (1982a^, 1984, and 1985) cost 

adjustment procedures (e.g., KBB and KCC). Besides limiting their study to serial product 

structures with no more than 12 end items and 5 echelons (60 items), they also used a 

simplifying assumption that the items have proportional processing times across echelons, i.e., 

if item A requires twice as much capacity as item B on echelon 1, then A must also require 

twice as much capacity as B on all other echelons. This rather severe restriction allows for the 

implementation of relatively simple multiple echelon feasibility checks. Nevertheless, their 

resuhs indicate that the Blackburn and Millen cost adjustment procedures can provide a 

significant enhancement to lot sizing heuristic performance. 

Motivations 

Unfortunately, little of the CLSP research of the last twenty years has made its way into 

industry practice. Thus, the general motivation behind the research discussed in this 

dissertation was to derive and test heuristics directed towards providing practical, medium-

range planning tools for dealing with realistically complex, commonly occurring lot sizing 

problems such as one would find in a typical job shop, production environment. 

Dbcon and Silver's heuristic has proven to be a quick, computationally efficient heuristic 

that generates feasible (if possible), good solutions to single stage, multiple item, multiple 
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period, dynamic capacitated lot sizing problems. However, it does not allow for setup times— 

this severely limits the industrial applicability of Dixon and Silver's heuristic. Consequently, 

since no other fast heuristics are available to solve these types of more complicated lot sizing 

problems, a primary goal of this research was to develop a heuristic lot sizing approach that 

would be competitive with the DS heuristic with respect to computational times and solution 

quality, as well as be capable of handling the very common problem of lot sizing items with 

significant setup tunes. This is a major extension because setup times convert the problem 

mto one with non-linear capacity constraints. 

Another primary motivation of the dissertation research was to extend single echelon 

heuristics so that they are capable of solving realistically sized, multiple echelon, multi-

capacitated problems with assembly product structures. This capability is important because 

most industrial problems exist within the framework of a multiple echelon environment and, 

unfortunately, industrial lot sizing practice tends to ignore this complexity. That is, each 

echelon is solved sequentially without considering lower or upper echelon cost impacts; then, 

laborious trial and error adjustments are made to satisfy any binding capacity constraints. 

Consequently, a goal was to provide a more powerful, less labor intensive, integrated 

methodology for dealing with these types of problems. 

Finally, the testing of single and multiple echelon heuristics is critical. Previous research 

has tended to use small, unrealistic problems. Consequently, a primary goal was the 

development of better or new random problem generators capable of producing realistic lot 

sizing problems that allow variation in number of items and periods, capacity utilization, 

average EOQ time between setups, demand variation, and setup time. 
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CHAPTER 1. AN EXTENDED DKON AND SHAVER HEURISTIC 

FOR SOLVING DYNAMIC, CAPACITATED LOT-SIZING PROBLEMS 

A paper published in the Srdlntematioml IE Research Conference Proceedings 

Robert J. McCoy and Douglas D. Gemmill 

Industrial and Manufacturing Systems Engineering Department 

Iowa State University, Ames, Iowa 

ABSTRACT 

This paper presents an extension to the Dixon and Silver lot-sizing heuristic that offers 

improved solution cost performance at a small computational expense. 

INTRODUCTION 

A common and important industrial inventory control problem involves determining 

production lot-sizes for multiple items that share a common capacity constraint. Specifically, 

the problem consists of scheduling for multiple periods the production timing and quantity of 

multiple items so as to minimize the sum of both setup and linear holding costs while 

satisfying demands (without backlogs) and adhering to the capacity constraint. The capacity 

constraint and item demands may be time-varying, but are assumed to be deterministic. A 

Material Requurements Planning (MRP) context with "rolling horizon" scheduling is one 

example of a production planning environment where these types of problems must routinely 

be solved. 
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Due to the complexity of the problem (it is known to be NP-hard [1]), research attention has 

primarily focused on the development of heuristics rather than optimization methodologies. 

Consequently, over the last twenty years, a number of heuristics have been developed. A few 

of these heuristics are listed below, but for a more detailed review of the problem and 

associated solution methodologies, the reader is referred to two reviews [2,3]. 

In 1975, Eisenhut [4] extended the well-known Silver-Meal heuristic to solve capacitated, 

multi-item problems. Lambrecht and VanderVeken [5] extended the work of Eisenhut to 

guarantee feasibility (if feasibility is possible) of the resulting lot-sizing solution. In 1981, 

Dixon and Silver [6] published a relatively simple (and fast), 'greedy' heuristic that built upon 

previous enhancements to the Silver-Meal heuristic and uses a forward look-ahead to ensure 

feasibility. Since then, this heuristic has received considerable, favorable attention as a stand­

alone solution methodology ([2] and [3]) and as a starting point for more complicated, 

computationally expensive methodologies. For example, both the Thizy and Van Wassenhove 

[7] and Diaby et aL[8], Lagrangean Relaxation approaches use Dixon and Silver's solution to 

initialize dual costs associated with a transportation network formulation of the lot-sizing 

problem. 

In this paper, the general solution methodology of Dixon and Silver will be extended. The 

resulting Extended Dbcon-Silver (EDS) Heuristic, while more complicated than Dixon and 

Silver's original, is still relatively simple and fast. Furthermore, the extended heuristic 

generated better solutions for seven out of eight lot-sizing problems taken from the literature. 

Additionally, better results were obtained on all four of the suitable, "real world" problems 

found in the literature—three from Dbcon and Silver's original paper [6] and the other from 

Maes and Van Wassenhove [3]. These results are provided later in this paper. 
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SUMMARY OF THE EXTENDED DDCON-SILVER HEURISTIC 

The EDS heuristic is composed of two main algorithms: (1) an algorithm that uses the basic 

Dixon and Silver Heuristic's logic~but modifies the marginal benefit calculation to allow for 

the iterative creation of multiple solutions; and (2) the new Forward and Backward 

Adjustment improvement algorithms. The basic Dixon and Silver algorithm is a greedy 

heuristic that uses modified Silver-Meal criteria that attempts to minimize the average cost of 

each lot per unit of time. The modification to the Silver-Meal criteria is necessary only if 

capacity is limited and there is competition for a limited resource-thus, it is not possible that 

all lot-sizes can be increased such that the average cost per unit of time is minimized. In this 

case, the greedy heuristic increases the lot-size of the item for which a single period increase 

in its time supply results in the largest average cost decrease per unit of capacity (e.g., hours) 

expended. Furthermore, the heuristic uses a look-ahead criterion to achieve feasibility (if 

possible). The reader may refer to the original article by Dixon and Silver [6] for a more 

detailed discussion of the basic heuristic and its associated flowchart. 

The EDS Heuristic uses the same general solution logic as the original Dixon and Silver 

Heuristic, hereafter called the T)&S' Heuristic. However, the EDS implementation differs in 

two primary ways fi-om the original implementation. The first primary difference relates to a 

modification of the equations used to calculate the marginal benefit of increasing the lot size 

of each particular item (referred to as Ui in reference [6]). In general terms, each time the 

marginal benefit is calculated, a perturbation cost factor is multiplied by the hours of planned, 

consumed capacity associated with each item's potential lot size. This cost is added to the 

average cost calculations and often has the effect of slightly modifying the solutions generated 

by the EDS heuristic, i.e., the perturbation cost factor has the effect of modifying (in close or 

tie breaker situations) the choice of the next item selected for increasing its lot size. Thus, due 
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to the rapid solution times associated vwth the heuristic, this allows the user to iteratively 

generate multiple solutions, with the lowest cost solution selected for implementation. On the 

basis of experimentation, perturbation cost values m the range of -4.0 to +4.0 were found to 

be most helpful in solving the data sets provided in "RESULTS'. However, because the code 

associated with this perturbation cost factor is space intensive to describe, no additional 

attention will be devoted to the differences. Rather, the EDS Heuristic code will be provided 

to interested readers. 

The new improvement algorithm is the other primary difference between the EDS heuristic 

and the original D&S Heuristic. The D&S Heuristic uses a simple improvement subroutine 

that checks the lot-sizing solution generated by the basic heuristic, starting with period two 

and proceeding to the end of the planning horizon. It looks for lots that could be eliminated 

by consolidating them into existing lots that occur in earlier periods with sufficient capacity to 

cover the additional production quantity. Of course, this consolidation only occurs if the 

additional holding cost incurred is less than the setup cost saved. 

The EDS Heuristic uses a more complex improvement algorithm. This algorithm starts with 

the feasible lot-sizing solution generated by the basic algorithm and looks for improvement in 

the final solution cost by adjusting certain lot-sizes (complete or partial) forward and/or 

backward in time. The first of the two main sections of the improvement algorithm begins by 

checking for extra item inventory that is needlessly being carried and could be shifted to a 

later production period and lower total planned costs. An example of how this excess 

inventory for a particular item could be generated by the basic algorithm is as follows: (1) 

The algorithm uses the basic Dixon and Silver logic (which may include the addition of a 

perturbation cost factor) to determine lot-sizes for a particular production period, e.g., period 
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one. In determining the lot-sizes for one of the items, e.g., item *A', the algorithm detem^es 

that it is desirable to supply period two's demand for item A by production in period one. 

That is, the greedy algorithm determines that it is cost beneficial and feasible to eliminate the 

setup of item A in period two by instead producing in period one. (2) After finishing the 

determination of lot-sizes in period one for all items and completing the forward-looking 

feasibility check, the basic algorithm moves on to consider period two and determines the 

most cost effective lot-sizes. Once again, the algorithm does a forward-looking feasibility 

check. However, the basic D&S Heuristic may have diflBculty at this point—that is, the 

forward-looking feasibility check may determine that additional current period production, 

while not cost eflfective, is requu^ed to ensure fixture production period feasibility. In this 

example, if the heuristic determines that item A has the smallest marginal increase in average 

costs per unit of capacity absorbed, then it will schedule production of item A in period two. 

Therefore, the item A lot-size decision regarding period one is no longer sound because an 

item A setup is now planned for period two -while at the same tune extra holding costs will be 

incurred. Thus, holding costs may be reduced by shifting some production fi"om period one to 

period two. 

The Forward Adjustment Algorithm is the first section of the improvement algorithm and 

compensates for the type of situation described above. The detailed flow chart associated 

with this algorithm is provided in Figure 1. The flow chart is relatively self-explanatory, but 

step eight requires a brief clarification. Specifically, the algorithm in steps two to seven shifts 

a maximum of one item per period forward in time one period. Consequently, if any shifting 

occurred in steps two to seven, then additional shifting within the revised available capacity 

may be possible. Thus, step 8 directs the algorithm to go back to step one for additional 

repetition(s). 
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V, / 

step 1; start at period T = 1 

step 2: calc. the extra inven­
tory available for each item 

step 3: check period T+1 
capacity avail., and reduce 
extra inventory if necessary 
to fit within avail, capacity 

step 4: calc. the potential 
holding cost savings for 
each item with extra inv. 

step 5: choose item with 
largest positive savings 
& adjust item production 
forward one period in time 

step 6: increase by one the 
time period (T) currently 
being examined, T=T+1 

step 7: 
is T = last period? 

step 8: was 
production 

adjusted forward 
in step 5? 

step 9: the Forward Adj. 
algorithm is complete 

Figure 1: Forward Adjustment Algorithm Flowchart 
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The second main section of the improvement algorithm is called the Backward Adjustment 

Algorithm. It deals with cost effectively eliminating some production setups by shifting 

production of one or more items back to an earlier production period. An example of a 

situation where this iteration of the improvement algorithm may result in reduced costs is the 

situation discussed above in the Forward Adjustment explanation. That is, capacity 

constraints have caused the planning formation of a small non-economic production lot that 

could be shifted in time (in this case backward) and result in a lower overall cost. However, 

unlike the simple period by period check made by the improvement algorithm of Dixon and 

Silver, this Backward Adjustment algorithm differs in two major respects: (1) it is a muhi-pass 

algorithm that reviews all planned lot-sizes for the largest potential savings; and (2) it does 

not restrict itself to simply eliminating a particular lot-size and shifting it back in time to a 

period that already has a lot scheduled. This last difference is particularly important because it 

opens up improvement possibilities that are not available to the D&S improvement algorithm. 

To aid in understanding the Backward Adjustment Algorithm, the detailed flow chart of 

Figure 2 is offered. Furthermore, additional explanation regarding step 6 is provided: Step 6: 

Calculate the overall savings (if any) associated with the elimination considered in step 5. The 

methodology for calculating the savings is as follows; 

(A) Calculate the additional holding cost for the item in question resulting from eliminating 

the future lot-size (in period E) and producing in the current period (T) being analyzed. 

(B) Calculate the capacity shortage penalty associated with the elimination of production 

in period E. If sufficient capacity exists in period T (where the production would be moved), 

the penalty is zero. However, if the move is only feasible due to cumulative (unused) available 

capacity, then the calculations are more complex because one must estimate the holding cost 

penalty associated with moving production of one or more items earlier in time so as to free 
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^ step 1: calc. the cummulative 
^ avail, capacity for each period 

step 2; set the initial period 
being examined (T) to 
period number one 

step 3: set to one the item 
number (INUM) being 
examined initially 

step 4; set the initial period 
production being considered 
for elimination (E) to T+1 

V y 
step 12: 
increase 
T by one 

\ / 

step 9: 
increase 
E by one 

step 5: 
is it feasible to 

shift back the prod, 
planned for per. 

E? 

step 10: 
increase 
INUM byl  

step 14: 
is one or more entries 

in the cost matrix 
positive 

? 

step 19: the Backward Adj 
algorithm is complete 

step 6; calc. the potential 
savings if the lot in period E 
was shited back to period T 

step 7: record the savings in 
a two dimensional cost matrix 
(record 0. if savings negative) 

step 15: implement the move 
with the largest potential 
savings and update capacities 

step 16: 
is capacity in per. T 

adequate 
? 

step 17: set the demand(i,j) 
equal to lot-sizesOJ) established 
to date for each item & period 

VL/ 
step 18: use basic DS Heuristic 
to adjust lot-sizes previous to T 
so as to achieve feasibility 

Figure 2: Bacicward Adjustment Algorithm Flowchart 
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up sufficient capacity. (Note; estimation is required because, without actually rescheduling all 

the previous periods, it is not known a priori which item(s) would be moved.) The approach 

taken by the algorithm is to use the minimum holding cost. This is a best case estimate that 

will maximize the number of possible changes considered (and increase the potential cost 

performance and computational requirements of the algorithm). 

(C) Subtract the holding costs calculated in A and B from the savings resulting from 

eliminating the future lot-size (i.e., the setup cost for the item). Divide this amount by the 

capacity impact of the lot-size in period E being considered for backward movement. 

The main sections of the new heuristic have now been described. The configuration of the 

EDS heuristic is to run the basic algorithm first (with a zero perturbation cost factor), 

followed by the Forward Adjustment algorithm, then the Backward Adjustment algorithm, 

and concluding with a review (and possible adjustment) of the lot-sizing solution using the 

Forward Adjustment algorithm. Then, at the discretion of the user, additional iterations of the 

algorithm may be run—each iteration using either a positive or negative perturbation value. 

This iteration will often produce a superior (lower cost) solution at the expense of additional 

computer time. 

RESULTS 

A review of the literature identified eight, multi-item, capacitated, single-level, dynamic lot-

si:dng problems that included published Dbcon and Silver solution values and sufficient 

problem data so that the EDS Heuristic could be applied and its solution cost determined. 

Three of the problems (DS1-DS3) are 'real world' problems taken from the original Dixon and 

Silver article ([6], Machines 1 to 3). Four others (TVW1-TVW4) were taken from Thizy and 

Van Wassenhove [7]. The final problem (MVW) was taken from Maes and Van Wassenhove 
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[3]. It is reported to be an actual industrial problem supplied by a large Belgian plastic's 

manufacturer. The eight problems range in size from eight to twenty items and a total of 

eight to thirteen periods. 

The best results of applying multiple iterations of the EDS Heuristic to the eight problems are 

shown in Table 1. For each problem, a total of 9 iterations was run (with perturbation cost 

values of -4, -3,... 3,4). Also included are the associated solution costs of the EDS 

Heuristic (with one iteration at a perturbation value of 0.0), the D&S Heuristic, and the 

optimal solution (for TVWl-4 and DS3). 

TABLE 1: 
COMPARISON-HEURISTIC SOLUTION QUALITY 

9 Iter. 1 Iter. 
Prob. Name EDSf*^ EDS D&S Optimal 

TVWl 8480 (- 1) 8650 8710 8430 
TVW2 7940 (+4) 8030 7930 7910 
TVW3 7610 (+2) 7910 7970 7610 
TVW4 7520 (+1) 7630 8000 7520 
MVW 12652 ( 0) 12652 13113 n.a. 
DSl 93314 (+4) 94636 95537 n.a. 
DS2 71712 (-4) 72849 73161 n.a. 
DS3 5854 (+1) 5867 5944 5808 

* ( ) Equals integer perturbation cost value associated with the best solution identified. 

As Table 1 shows, on seven out of the eight problems, the EDS Heuristic provided better 

solutions than Dixon and Silver. Additionally, it appears that the computational advantage of 

the EDS heuristic is greatest on problems with 'looser' (but still binding) capacity constraints 

and relatively high setup costs, e.g., TVW3 and TVW4. 

Computation times are also an important aspect of heuristic performance. The times relating 

to the D&S Heuristic have been well documented [3,9]. This heuristic, as well as the EDS 
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Heuristic, may be categorized as a simple and fast heuristic that requires little computer 

memory. However, they also exhibit a typical trade-off between solution speed and solution 

accuracy. That is, the D&S heuristic is faster and has a poorer performance, while the EDS 

Heuristic is slower, but has a better overall performance. However, on problems of this size, 

the EDS heuristic is very fast—on a DECstation 5100 workstation, the 9 iterations of each 

problem could be solved in a maximum of less than 2 CPU seconds per problem. In contrast, 

the optimum solution times (on a VAX 750) range from 34 to 4,909 CPU seconds per 

problem [10]. These optimal solution times are excessive for the majority of users requiring 

to solve numerous capacitated lot-sizing problems on a repetitive basis—hence, the importance 

of heuristic solution procedures. 

The relatively fast computational times of the EDS heuristic and the solution cost results 

shown in Table 1 indicate that the EDS Heuristic is a competitive alternative to the Dixon and 

Silver heuristic. On the eight problems tested, the EDS Heuristic, with both nine iterations 

and just one iteration, beat the results of the D&S heuristic on seven out of the eight 

problems. And, the EDS heuristic with nine iterations provided a total average reduction of 

2.9 percent from the eight solutions provided by the D&S heuristic. Furthermore, on the five 

problems with an available optimal solution value, the EDS heuristic hit the optimal on two of 

the problems and missed the optimal on the other three by at most 0.8 percent. In contrast, 

the D&S heuristic did not hit the optimal on any of the five, it missed the optimal by 6.4 

percent on one problem, and its solutions averaged 3.4 percent over the optimal. 

The EDS computer code and the test problems are available upon request. 
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RESEARCH DIRECTIONS 

Work is currently underway to test the new EDS heuristic against additional problem sets and 

extend its general solution methodology to enable it to handle capacitated lot-sizing problems 

with setup times. Furthermore, future research will investigate extendmg the EDS heuristic to 

solve multiple stage [echelon], capacitated lot-sizing problems. 

CONCLUSION 

In this paper, an extension to a fast and simple heuristic for solving multi-item, multi-period, 

single-level, dynamic, capacitated lot-sizing problems was presented and applied to eight 

problems found in the literature. It was shown that the Extended Dixon-Silver (EDS) 

Heuristic provided better solutions than the original Dbcon and Silver Heuristic on seven of 

the eight problems and, on the five problems with available optimal solutions, it generated 

solutions that hit the optimal on two of the problems and deviated fi-om the optimal on the 

other three by at most 0.8 percent. Therefore, it is a reasonable alternative for users wishing 

to increase their lot-sizing solution accuracy at a minor computational expense. 
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Abstract 

The development and testing of a fast heuristic, called the MG heuristic, is discussed. 

This new heuristic is capable of solving multiple item, multiple period, dynamic capacitated 

lot sizing problems, with or without setup times. Comparison testing of the MG heuristic 

against other leading heuristics used large-scale, realistically sized problems. For even the 

largest group of problems tested, 4000 items and 25 periods, its approximate average CPU 

time (on aDECstation 5000/200 workstation) was 1.0 minute. And, for all 216 problems 

tested, the MG heuristic's average solution costs were just 0.86% higher than the best 

(Lagrangean relaxation) heuristic against which it was tested, at 0.026 the computation time. 

Keywords: Lot Sizing; Production Planning; Material Requirements Planning; and Job Shop. 

1. Introduction 

The Capacitated Lot Sizing (CLS) problem is an important industrial inventory control 

problem that involves determining medium-range production planning lot sizes for items that 

share a common capacity constraint. A material requirements planning (MRP) system is a 

common example of a situation requiring the frequent solvuig of CLS problems. Specifically, 

the problem consists of scheduling for multiple periods the production timmg and quantity of 

multiple items so as to minimize the sum of both setup and linear holding costs while 
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satisfying demands (vdthout backlogs) and adhering to the capacities associated with a single 

resource. The capacity constraint and product demands may be time-varying, but are assumed 

to be deterministic, even though they are often based on forecasts. Furthermore, item setup 

costs are incurred in each period that a particular item is produced. The problem is 

complicated by the inclusion of item setup times (which consume capacity). For a 

mathematical definition of the problem, the reader is referred to [1]. 

These types of production planning problems are extremely complex. The single item, 

single stage, non-capacitated version of the problem can be solved efficiently using Wagner 

and Whitin's methodology [2], but just adding a capacity constraint converts the problem to 

one that has been shown to be NP-hard [3]. Consequently, CLS research has primarily 

focused on the development of heuristics rather than optimization methodologies. As a result, 

a number of heuristics have been developed over the last twenty years, but most do not allow 

for the inclusion of setup times. For a detailed review of the CLS problem without setup 

times and associated solution methodologies, the reader is referred to two reviews [4 and 5]. 

In spite of the common occurrence of CLS problems with significant levels of setup 

times, the list of heuristics available to solve these types of problems is short and is limited to 

computationally complex heuristics. The list includes TTM heuristic ([1 and 6], using 

Lagrangean relaxation), Subgradient Lagrangean Relaxation (SLR) heuristic [7 and 8], and 

Billington's heuristic [9]. The TTM heuristic tested superior to the Billington heuristic [6] and 

the computational complexity of the Billington heuristic makes it inappropriate for realistically 

sized CLS problems. Therefore, Billington's heuristic will not be discussed fiirther. 

Trigeiro et al. [1] includes significant detail relating to the issues and complexity 

associated with solving CLS problems that include setup times. Using a factorial design 

associated with their TTM heuristic testing, they made the following conclusion based on an 

analysis of the solution gaps (deviation fi-om the Lagrangean lower bound to their solution); 
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problems with high setup costs relative to holding costs, few items and tight capacity 

constraints tended to have increased solution gaps and are therefore more difficult problems. 

Furthermore, they indicated that because large problems are easier to solve than small 

problems (but require more computation time), previous research based on small problems 

may not provide results representative of typical (large) CLS problems encountered in 

industrial settings. They concluded that simple, fast heuristic algorithms may thus be more 

useful in practice than suggested by previous research findings. 

Trigeiro et al. [1] also discussed the difficulty of solving problems with setup times. 

They wrote, "It is a grave error to state that setup time is a simple extension of setup cost. 

For example, the problem of determining whether a feasible solution exists goes fi"om trivial to 

NP complete when setup time is added." Therefore, the issue of determining feasibility is 

significant, because there Is no easy way to determine if a feasible solution exists for a given 

problem that includes setup time. 

One prime motivation behind the research described in this paper was to help fill a 

perceived void in available CLS heuristics. That Is, the need for a fast, robust heuristic that 

would provide a practical, medium-range planning tool for solving realistically complex, 

commonly occurring lot sizing problems, with (or without) significant levels of setup time, 

such as one would find in a typical job shop environment. Computationally complex 

heuristics, such as the TTM heuristic, are available that do explicitly account for setup times. 

Their primary drawback is excessive computation time for realistically sized CLS problems. 

Currently, for large-scale problems without setup times, the Dbcon and Silver heuristic [10], 

among others, has filled the need for a fast heuristic that can be expected to generate a 

reasonably good solution in a reasonable amount of computation time. From a practitioner's 

viewpoint in an actual production setting, given the uncertainties usually associated with a 

typical "real world" production problem (e.g., approximate setup and holding costs, uncertain 
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demand forecasts, and approximate capacity constraints), the DS solutions are generally 

adequate. However, in many production environments (and even in many factories that strive 

for JIT adherence), setup times are significant and must be taken into account. Unfortunately, 

current industry practice associated with constructing a feasible production schedule that 

reflects setup times often mvolves a significant amount of labor intensive, iterative 'trial and 

error' effort — thus the need for a fast CLS heuristic capable of solving problems with setup 

times. 

Another motivation behind this research was to test the solution quality and 

computational performance of several leading CLS heuristics, as well as the new MG 

heuristic, on randomly generated problems more representative of the "real world" (in terms 

of both size and problem characteristics) than those commonly used in past research. In the 

following sections, a description of the new heuristic, the MG heuristic, and its solution 

methodology will first be provided. Then, the testing process, including random problem 

generation, and associated results will be discussed. 

2. The MG Heuristic 

The new MG heuristic for solving large-scale CLS problems has three main sections: 

(A) Wagner-Whitin (WW) algorithm and a feasibility seeking subroutine (referred to below as 

the "smoothing" subroutine); (B) a modified Dbcon and Silver heuristic (only used when the 

previous procedure, section A, does not result in an initial feasible solution); and (C) 

improvement algorithms. The MG heuristic starts by ignoring the capacity restrictions and 

uses the basic WW dynamic programming algorithm to optimally solve the resulting 

uncapacitated lot sizing problem. (Note: minor improvements in overall computational speed 

could be obtained by incorporating one of the dynamic programming refinements recently 

suggested, e.g., [11].) Then, after reinstalling the capacity restrictions, a feasibility check is 
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performed. Typically, except for trivial problems, the WW solution is infeasible. If it is 

feasible, the MG heuristic ends with the retted WW (optimal) solution. 

To seek feasibility using the initial WW solution as the starting point, the MG heuristic 

uses a modified version of the "smoothmg" subroutine fi-om the TTM heuristic, Trigeiro et al. 

[1]. This modified code does not utilize dual costs of capacity, as does the original code. It 

merely seeks to obtain a feasible solution that satisfies capacity constraints using the WW 

generated lot sizes as a starting point. It does this by making, if necessary, multiple backward 

and forward passes to shift full or partial lot sizes out of periods that are overloaded with 

respect to capacity. (For additional details relating to this methodology, refer to the above 

reference article.) However, this smoothing subroutine does not guarantee a feasible solution, 

particularly for tightly constrained problems with significant levels of setup time. If the 

"smoothed" WW solution is not feasible, the MG heuristic seeks an initial feasible solution by 

using a modified version of the DS heuristic. Our modifications to the basic DS heuristic 

enable it to solve problems with setup time and are discussed in Appendix I. 

For large-scale CLS problems, the modified DS heuristic is only used when the initial 

WW and smoothing process does not identify a feasible solution. This does not commonly 

occur for problems without setup time, but when it does, use of the DS heuristic guarantees a 

feasible solution will be found (if feasibility is possible). For CLS problems with setup time, 

using the modified DS heuristic to obtain feasibility is more complicated, but the general idea 

associated with its use is relatively simple. On marginally feasible problems ^^dth setup times, 

achieving feasibility is enhanced by reducing the number of setups, thereby reducing total 

setup time requirements. The MG heuristic uses the modified DS heuristic and temporarily 

increases the setup costs for all items. Then, the DS solution procedure will tend to maximize 

the capacity use at the start of the production schedule and, because of the inflated setup 

costs, it will tend to reduce the number of setups scheduled. Thus the amount of capacity 
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expended on setups is decreased and the likelihood of identifying an initial feasible starting 

solution is enhanced. Then, if an initial feasible solution is identified, the original setup costs 

are reinstated and the improvement algorithms (discussed below) are applied. 

The third (and last), main section of the MG heuristic involves the use of three 

improvement algorithms. Their use follows the attainment of an initial feasible solution by the 

WW and smoothing algorithms or, if required, the modified DS heuristic. These improvement 

algorithms are run in series and include a modified version of the improvement algorithm 

supplied with the basic DS heuristic and new forward and backward adjustment improvement 

algorithms. These algorithms adjust the lot sizes of the initial feasible solution with the 

objective of maintaining feasibility while lowering total costs (setup and holding). After 

running the improvement algorithms, the MG heuristic terminates. 

The first of the improvement algorithms used by the MG heuristic is a modification of 

the DS unprovement algorithm supplied by Dr. Van Wassenhove, which implements 

possibilities 1 and 4 of the improvement algorithm described in [10]. The reader is referred to 

this article for an overview of the improvement logic associated with the algorithm. We 

modified the basic DS improvement algorithm to account for the impact of setup time and 

improve its computational eflSciency. For an overview of the logic associated with the 

improvement in computational efficiency, see Appendix n. 

In addition to the modified improvement algorithm described above, the MG heuristic 

uses two other improvement algorithms. These algorithms also start with the best, feasible lot 

siang solution generated to that point in time and look for improvement in the final solution 

cost by adjusting certain lot sizes (complete or partial) forward or backward in time. The first 

of these improvement algorithms, called the Torward Adjustment' algorithm, begins by 

checking for extra item inventoiy that is needlessly being carried and that could be shifted to a 

later production period to lower total planned costs. It is a period by period (starting in 
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period one), multiple pass, review. It seeks to lower total costs by reducing holding costs, 

possibly at the expense of additional setup cost and time. 

The second improvement algorithm is called the "Backward Adjustment' algorithm. It 

deals with cost effectively eliminating some production setups by shifting production of one or 

more items back to an earlier production period. Unlike the basic improvement algorithm of 

Dixon and Silver, the Backward Adjustment algorithm does not restrict itself to simply 

eliminating a particular lot size and shifting it back in time to a period that already has a lot 

scheduled and that has adequate capacity. If adequate incremental capacity exists and it 

appears cost effective to do so, the algorithm will overload a particular period's capacity and 

then use the modified DS heuristic to regain feasibility by shifting production into an earlier 

production period(s). This opens up improvement possibilities that are not available to the 

basic DS improvement algorithm. Detailed discussion of both the forward and backward 

improvement algorithms, as well as flowcharts, are provided in [12]. 

3. Heuristic Testing 

In addition to the MG heuristic, testing incorporated the following CLS heuristics: DS 

[10], DPA [13], and TTM [1 and 6]. Large-scale testing of the TTM heuristic was desired — 

previously reported testing was limited to problems of no more than 36 items. Computer 

implementations of the DS and DPA heuristics were supplied by Dr. Luk Van Wassenhove, 

INSEAD. The TTM heuristic was supplied by Dr. Trigeiro, MITRE Corporation. 

Based on previous, initial testing [14], other CLS heuristics such as SLR [7 and 8], LV 

[15] and TVW [16] were not included in the testing discussed in this paper. Our preliminary 

testing indicated that the LV heuristic, while marginally faster than the DS heuristic, tended to 

generate solutions with significantly higher cost than those generated by the DS heuristic. The 

TVW heuristic was omitted because of slow computation times and and the superiority of the 
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TTM heuristic. The performance of the SLR heuristic, while designed for large-scale testing, 

was disappointing. Our preliminary testing indicated that it works well on some problems, but 

its performance is variable. Without resorting to a 'trial and error* approach to settmg the user 

supplied run control parameters, the SLR heuristic failed to consistently identify feasible 

solutions to feasible CLS problems (without setup time). We concluded that the heuristic's 

run control parameter settings are critical to the performance of the heuristic and are of 

questionable robustness over a variety of CLS problem characteristics. 

The random problem generator used for our testing was a modified version of the 

generator used by Diaby et al. [7] for their large-scale testing. The reader is referred to their 

article for details relating to the basic generator. The significant modifications to the 

generator are: (A) Production time, rather than being constant at 1.0 per unit demand, was 

allowed to vary normally around a mean value of 1.0; (B) The user was provided the 

capability of influencing the average setup times, setup costs and carrying costs values for a 

particular problem ~ thus the user can approximately specify, using program run control 

parameters, the average level of setup time and the average time between orders (TBO). 

Note: TBO is defined using the standard mathematical definition, see [5]; (C) Setup cost 

calculations for each item were modified to provide positive correlation between the level of 

setup time and the setup cost. Thus, the setup costs were generated as follows: 

AVE(I)=(ST(I) * 10. + RM • 200.) * SCF; and 

SC(I)=20. + AVE(I) * (1.0 + Z / 6.0); 

where: I = item number; ST = setup time; RM = random number; 

SCF = setup cost factor; SC = setup cost; Z = normal random variate; 

and (D) The methodology of calculating each period's capacity constraint was modified to 

provide more realistic capacity profiles (refer to [14]). The original generator tends to lump a 

disproportionate amount of total capacity mto the first period, vwth the rest of the production 
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period's capacity set to a lower, constant level. Our modifications reduce the amount of first 

period (upward) bias and generates production period capacities that vary normally around an 

overall CLS problem average. Appendix HI provides an overview of our capacity 

determination methodology. 

Our testing was designed to determine the relative performance of the tested heuristics 

on randomly generated large-scale problems. The testing was conducted on four major 

categories of problems: (1) low TBO problems without setup time; (2) hieh TBO problems 

without setup; (3) low TBO problems with setup time; and (4) high TBO problems with setup 

time. Within each of the four categories, the problem generator was used to vary the problem 

size (fi"om 250 to 4000 items and fi-om 25 to 50 periods) and the approximate, overall, 

capacity utilization level. This allowed us to study the effect of problem size and capacity 

utilization level on solution quality and computation time. 

Use of problems without setup time allowed us to test the DS and DPA heuristics along 

with the MG and TTM heuristics. The two categories of problems with setup time included 

only problems with setup time utilization greater than 10%, i.e., in the final solution, more 

than 10% of the total capacity available was used to setup items. This ensured that the total 

setup time was at a significant level. 

TBO was segregated into two levels. The low level was defined as TBO less than 2.0. 

The high level was defined as TBO between the value of 2.5 and 5.0. The reason for the gap 

between 2.0 and 2.5 was to provide a significant difference between the two levels. 

Within each of the four setup/TBO categories, 54 problems were randomly generated, 

for a total of 216 problems. Of the 54 problems in each category, thirty were 250 items and 

25 periods in size. Of these thirty problems, in order to assess the impact of overall capacity 

utilization on solution quality and time, we generated twelve high utilization, twelve medium 

utilization and sbc low utilization problems. Average capacity utilization was calculated over 
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all but the final four production periods. The last four periods were omitted to reduce the 

effects of batching at the end of the production horizon. Based on preliminary testing, we set 

the following definitions of capacity utilization ranges: low — utilization in the range of 70% 

to less than 80%; medium — utilization in the range of 80% to less than 90%; and high ~ 

utilization in the range of 90% to 98%. Problems with average utilization less than 70% were 

thrown away because they tended to be trivial problems. On the other end, problems with 

over 98% average utilization levels (over a long time horizon) were marginally feasible 

problems that were not conunonly generated and tended to produce erratic heuristic 

performances. Thus, their inclusion would have created outliers, both with respect to solution 

quality and computation time. The impact of high capacity utilization on solution quality will 

be discussed later in more detail. 

In addition to the thirty 250 * 25 (item * period) problems generated in each category, 

twelve 1000 * 25, six 1000 * 50 and six 4000 » 25 problems were also generated to assess the 

impact of problem size on solution quality and particularly solution time. The capacity 

utilization target for these problems was a moderate 88%, and to facilitate comparison 

between size groupings, problems falling outside the range of 80% to 95% were discarded. 

In order to generate the 216 problems needed for testing, the random problem 

generator's run control parameters were set as follows: 

(A) The demand variability factor was set to a high level, i.e. two times the variability used by 

Diaby et al. [7]. This increased the "lumpiness" of the item demands, which is more 

representative of "real life" MRP component demand schedules [17], 

(B) For problems specified to have setup time, the setup time factor was set to generate 

problems that utilized, on average, about 22% of capacity (the actual range of values for the 

108 problems with setup time was fi"om 10-37%). 



www.manaraa.com

33 

(C) The setup cost and canying cost factors were varied over a range of values that tended to 

generate problems with average TBO values within the category ranges previously specified. 

Note that item TBO values often varied significantly around the overall problem TBO 

average. 

(D) The capacity constramt tightness factor was adjusted so as to influence the overall 

capacity utilization level and "fall" into the aforementioned categories. 

The use of the capacity constraint tightness factor could not be used to specify a 

particular utilization level. This is due to random variation in the individual period capacity 

constraints, variation in the setup and production times per item, and varying item setup and 

holding costs (which influences the number of item setups justified). Thus after each problem 

was generated, the MG heuristic was used to determine the amount of capacity utilization. 

For a particular setup/TBO category, if the calculated utilization fell outside the ranges 

specified above or if the required number of problems in a particular utilization range had 

already been obtained, the problem was discarded. The one exception to this is in the case of 

problems with setup times and a problem size of 250 items. Then, both the MG and TTM 

heuristics were applied to the problem to evaluate their relative effectiveness m finding a 

feasible solution to constrained problems. 

For problems that include significant levels of setup time, determining if problems are 

feasible is a major complication. As indicated earlier in the paper, the issue of determining 

feasibility in this environment is an NP-Complete problem. Trigeiro et al. [1] and Diaby et al. 

[7] handled this problem in the following manner. They use the output of their own, 

independently, developed random problem generator and apply their heuristic (only) to the 

resulting problems. Then, if their method does not generate a feasible solution, they throw the 

problem away ~ this of course biases their results, but the extent of the bias is unknown. This 

bias and the number of CLS problems with questionable feasibility can be reduced by applying 
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the guidelines cont^ed in Appendix IV. Also, by applying both the MG and TTM heuristics 

to the problems with setup time, the testing included in this paper is less biased. 

4. Heuristic Test Results 

Tables 1,2, 3, and 4 provide the test results for each of the four major problem 

categories. The resuks for each category include: (1) solution quality, expressed as the 

average deviation between the solutions of the MG heuristic and the other tested heuristics; 

and (2) average computation time (in CPU seconds) on a DECstation 5000/200 workstation. 

The heuristic abbreviations are as previously indicated. The 'LB gap' (lower bound gap) is 

defined as the percent difference between the TTM Lagrangean lower bound and the best 

solution achieved. Also provided in the tables are the range of solution ratios (where, for 

example, MG/TTM represents the MG solution cost divided by the TTM solution cost) and 

the CPU time ratios (where, for example, TTM/MG represents the average TTM computation 

time divided by the average MG time). 

With respect to overall solution quality, the computationally complex TTM heuristic 

outperformed the other heuristics tested. A number of paired-t statistical tests, at a 95% 

confidence level, was conducted on the resuhs included in each of the four categories of 

problems associated with the data in Tables 1 to 4. These tests all indicated a statistically 

significant difference between the solution quality of the TTM heuristic and the other 

heuristics tested (However, whether the differences are ofpractical significance is another 

issue that must be determined by the user). 

With respect to theoretical lower bounds, the TTM's solution quality is also quite good. On 

average, for the 108 problems without setup time, its solutions were less than one percent 

above the lower bound cost. For the 108 problems with setup times, the corresponding value 
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TABLE 1: LOT-SIZING PROBLEMS WITHOUT SETUP TIMES 
LOW TBO (0.50-2.0) 

COMPARISON OF THE MG. TTM. PS AND PPA HEURISTICS; 

SOLUTION QUALITY: 

ITEMS & 
PERIODS 
250 & 25 

UnL:HIGH 
UTIL;MED 
UTIL:LOW 

NO. OF 
PROB. 

12 
12 
6 

RANGE OF SOLUTION RATIOS 
MOmM 

0.995-1.055 
1.000-1.025 
1.001-1.005 

MG/DS 

0.980-1.024 
0.979-1.004 
0.977-0.984 

MG/DPA 

0.975-0.993 
0.981-0.998 
0.984-0.996 

AVERAGE PERCENT DEVTATTON 
MG vs. 11M MG vs. DS MG vs. PPA LB GAP 

1.04 
0.87 
0.31 

-0.85 
-0.94 
-2.12 

-1.48 
-0.97 
-0.83 

1.85 
0.18 
0.02 

1000 &25* 12 1.002-1.020 0.981-1.00 n.a. 0.92 -1.17 n.a. 0.45 

1000 & 50* 

4000 & 25* 

0.998-1.008 0.975-0.985 n.a. 

_6 0.998-1.014 0.974-0.992 n.a. 
54 GRAND AVERAGE 

0.19 

0.48 
0.74% 

-1.87 

-1.67 
-1.29% 

n.a. 

n.a. 
-1.15% 

0.98 

0.68 
0.74% 

COMPUTATION TIME: 
ITEMS & 
PERIODS 
250 & 25 

UnL: •• 
UTIL: LOW 

1000 & 25* 
1000 & 50* 
4000 & 25* 

NO. OF 
PROB. 

AVERAGE (DEC 5000^ CPU SECONDS 
MG TTM DS DPA 

CPU TIME RATIO 
TTM/MG DS/MG DPA/MG. 

24 2.6 75.1 7.5 164.7 28.9 2.9 63.3 
6 2.5 68.0 6.8 204.5 27.2 2.7 81.8 

12 12.3 400.9 91.7 n.a. 32.6 7.5 n.a. 
6 35.5 1946.1 586.6 n.a. 54.8 16.5 n.a. 

_6 35.2 3490.5 1641.0 n.a. 99.2 46.6 n.a. 
54 AVERAGE 40.2 10.3 67.0 

• UTILIZATION IN THE RANGE OF 80-95% 
** BOTH MEDIUM AND HIGH UTILIZATION 
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TABLE 2: LOT-SIZING PROBLEMS WITH SETUP TIMES 
LOW TBO (0.50-2.0) 

COMPARISON OF THE MG AND TTM HEURISTICS: 

SOLUTION QUALITY: 
NO. OF SOLUTION RATIO fMG/mvn AVERAGE PERCENT DEVIATION 

PROBLEM DESCRIPTION PROB. AVERAGE RANGE MG vs. TTM LOWER BOUND 
250 ITEMS • 25 PERIODS 

UTILIZATION: fflGH 
UTILIZATION: MED. 
UTILIZATION: LOW 

12 
12 
6 

1.0197 
1.0025 
1.0003 

1.0002-1.0380 
0.9994-1.0080 
0.9980-1.0007 

1.97 
0.25 
-0.03 

0.67 
0.13 
0.27 

1000 ITEMS » 25 PERIODS* 12 1.0142 1.0019-1.0625 1.14 0.10 

1000 ITEMS • 50 PERIODS* 6 1.0037 1.0013-1.0080 0.37 0.05 

4000 ITEMS •» 25 PERIODS* _6 
54 

1.0050 1.0002-1.0201 0.50 
GRAND AVERAGE 0.85% 

0.14 
0.25% 

COMPUTATION TIME: 

PROBLEM DESCRIPTION 
NO. OF 

PROBLEMS 
AVERAGE fDEC 5000) CPU SEC. 

MG TTM 
CPU TIME RATIO 

flTM/MG) 
250 ITEMS • 25 PERIODS 

UTILIZATION: MED&fflGH 
UTILIZATION: LOW 

24 
6 

3.3 
2.3 

113.8 
73.0 

34.5 
31.7 

1000 ITEMS * 25 PERIODS* 12 13.3 505.1 38.0 

1000 ITEMS • 50 PERIODS* 6 37.4 2013.5 53.8 

4000 ITEMS » 25 PERIODS* 6 89.4 2620.3 29.3 
54 AVERAGE 36.6 

* UTILIZATION IN THE RANGE OF 80-95% 
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TABLE 3: LOT-SIZING PROBLEMS WITHOUT SETUP TIMES 
HIGH TBO (2.50-5.00) 

COMPARISON OF THE MG. TTM. DS AND DPA HEURISTICS; 

• SOLUTION QUALITY; 
ITEMS & NO. OF RANGE OF SOLUTION RATIOS AVERAGE PERCENT DEVIATION 
PERIODS PROB. MG/TTM MG/DS MG/DPA MG vs. TTM MG vs. DS MG vs. DPA LBGAl 

250 & 25 
UTIL: HIGH 12 0.992-1.012 0.966-1.002 0.875-0.989 0.24 -1.07 -5.71 2.09 
UTIL:MED 12 1.000-1.005 0.986-0.999 0.925-0.998 0.21 -0.70 -1.84 0.51 
UTIL: LOW 6 0.999-1.001 0.988-0.999 0.972-0.997 0.03 -0.77 -0.90 0.07 

1000 &25* 12 1.000-1.010 0.990-0.998 0.926-0.997 0.20 -0.66 -2.06 0.67 

1000 & 50* 6 1.000-1.005 0.987-0.997 n.a. 0.17 -0.66 n.a. 0.54 

4000 & 25* 6 1.002-1.009 0.991-0.996 n.a. 0.34 -0.60 n.a. 0.98 
54 GRAND AVERAGE 0.20% -0.77% -2.87% 0.90% 

• COMPUTATION TIME; 
ITEMS & NO. OF AVERAGE (DEC 5000> CPU SECONDS CPU TIME RATIO 
PERIODS PROB. MG TTM DS DPA TTM/MG DS/MG DPA/MG. 
250 & 25 

UTIL: ** 24 3.4 81.5 3.2 12.8 24.4 0.9 3.8 
UTIL: LOW 6 2.0 35.7 4.0 29.0 17.9 2.0 14.5 

1000 & 25* 12 9.5 415.5 54.3 307.6 43.7 5.3 29.9 
1000 & 50* 6 37.3 1992.5 269.2 n.a. 53.4 7.2 n.a. 
4000 & 25 * _6 68.0 3304.6 838.3 n.a. 48.6 12.3 n.a. 

54 AVERAGE 33.9 4.0 12.8 

• UTILIZATION IN THE RANGE OF 80-95% 
•• BOTH MEDIUM AND HIGH UTILIZATION 
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TABLE 4; LOT-SIZING PROBLEMS WITH SETUP TIMES 
HIGH TBO (2.50-5.00) 

COMPARISON OF THE MG AND TTM HEURISTICS: 

SOLUTION QUALITY: 

PROBLEM DESCRIPTION 
250 ITEMS • 25 PERIODS 

UTILIZATION: HIGH 
UTILIZATION: MED. 
UTILIZATION: LOW 

1000 ITEMS • 25 PERIODS* 

1000 ITEMS • 50 PERIODS* 

4000 ITEMS » 25 PERIODS* 

COMPUTATION TIME; 

PROBLEM DESCRIPTION 
250 ITEMS » 25 PERIODS 

UTILIZATION: MED&HIGH 
UTILIZATION: LOW 

1000 ITEMS • 25 PERIODS* 

1000 ITEMS • 50 PERIODS* 

4000 ITEMS • 25 PERIODS* 

NO. OF 
PROB. 

12 
12 
6 

12 

6 

_6 
54 

SOLUTION RATIO fMGHTM^ 
AVERAGE RANGE 

AVERAGE PERCENT DEVIATION 
MG vs. TTM LOWER BOUND 

1.0251 
1.0181 
1.0027 

1.0136 

1.0037 

1.0108 

NO. OF 
PROBLEMS 

24 
6 

12 

6 

6 
54 

1.0028-1.1490 3.04 
1.0001-1.1400 1.81 
1.0012-1.0042 0.27 

1.0036-1.0425 1.36 

1.0016-1.0287 0.87 

1.013-1.0252 1.08 
GRAND AVERAGE 1.63% 

AVERAGE (DEC SOOQ-t CPU SEC. 
MG 

2.5 
2.4 

12.3 

38.2 

58.8 

TTM 

110.0 
100.0 

478.0 

2367.6 

2697.2 
AVERAGE 

0.57 
0.12 
0.02 

0.13 

0.10 

0.09 
0.21% 

CPU TIME RATIO 
HTM/MG^ 

44.0 
41.7 

38.9 

62.0 

45.9 
44.8 

* UTILIZATION IN THE RANGE OF 80-95% 
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was less than one-quarter percent. That solution gaps decrease for problems vwth setup time 

is consistent with the findings of Trigeiro et al [1]. 

On the 108 (low and high TBO) problems without setup times (see Tables 1 and 3), the 

MG heuristic outperformed both the DS and DP A heuristics by about 1% and 2%, 

respectively. In general, the DPA heuristic tended to perform poorly compared to the other 

heuristics tested ~ particularly for low TBO problems with high capacity utilization, where its 

solutions averaged 5.71% higher than the MG heuristic on the problems (sized 250 * 25) to 

which it was applied. On the other hand, the relative performance of the DS heuristic 

deteriorated on problems with low capacity utilization and high TBO (see Table 3). This 

finding is consistent with Maes and Van Wassenhove [5] whose results indicated that when 

comparing the DS and DPA performance, the DPA performs best on low utilization problems 

with sparse demands (high TBO) and the DS heuristic performs better on high utilization 

problems, regardless of TBO level. Since our test problems tended to be relatively tightly 

constrained, it is not surprising that the DS heuristic outperformed the DPA heuristic. 

As indicated, the MG heuristic typically outperformed the DS heuristic for both high and 

low TBO categories of problems without setup time. Furthermore, as will be discussed in 

greater detail below, the MG required less computation time. However, in analyzing the data 

associated with the high TBO problems, we found that for the problems with both average 

TBO and capacity utilization at the highest end of their respective ranges, the DS solutions 

tended to be competitive •\^ath those of the MG heuristic. 

The impact of capacity utilization on the lower bound gap is very apparent. That is, the 

higher the capacity utilization, the higher the lower bound gap and, in general, the greater the 

performance differences between the heuristics. 

The impact of problem size on the lower bound gap is inversely related, i.e. larger 

problems tend to have smaller gaps [1]. This impact can be seen in the results relating to the 
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problems with setup time (Tables 2 and 4). However, on problems without setup time, this 

impact is somewhat di£5cult to see. This may be accounted for by random differences in 

average capacity utilization for each of the size groupings (i.e., capacity utilization effects may 

have masked problem size effects). 

One area of MG heuristic weakness was identified by our testing. For marginally 

feasible, high TBO problems v^dth setup times, the MG performance relative to the TTM 

heuristic decreases. These problems can be easily identified by applying the MG heuristic and 

noting which problems, in order to obtain feasibility, require the use of the modified DS 

heuristic using temporarily inflated setup costs. When the MG heuristic was required to use 

its DS heuristic based feasibility attainment procedure, the resulting solutions tended to 

provide the greatest deviation fi-om the TTM heuristic's solution values. However, this 

procedure tends to do well finding a feasible solution to marginally feasible problems. In fact, 

in the process of obtaining the 108 (high and low TBO) problems with setup time, it failed to 

fmd a feasible solution to just one problem that was feasible (as determined by using the TTM 

heuristic). 

There were significant differences between the four heuristics' performances with respect 

to computation time. For three of the four major categories of problems tested, the TTM 

heuristic, not surprisingly, was the slowest tested. For the 4000 * 25 problems, over all four 

categories, its average computation tune was over 3000 seconds (50 minutes). In contrast, 

the MG heuristic averaged about 1 minute to solve these same problems. For the fourth 

major category, high TBO without setup time, the DPA heuristic was significantly slower than 

the other heuristics tested. For example, on the 250 * 25 item problems, it required 67 times 

the MG heuristic computation time. Furthermore, its computational complexity is poorer than 

the other heuristics. Therefore, because the solution quality of the DPA answers does not 

justify the computation expense, it was not tested on the larger sizes of problems. 
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While the MG heuristic uses the WW algorithm, it is possible to decrease its average 

computation time by using the Silver-Meal (SM) algorithm in its place. So, we experimented 

with a version of the MG heuristic that used the SM algorithm in place of the WW algorithm. 

This resulting heuristic was used on a subset of the problems tested and approximately a 10 to 

20 percent average reduction in total computation time was achieved, depending on the length 

of the planning horizon. However, there was also a decrease in solution quality associated 

with using the SM algorithm, rather than WW. For example, on the six, 1000 * 50, low TBO 

problems tested, use of the SM algorithm in the MG heuristic reduced the total average 

computation time by about 16% (i.e., 6 seconds), while increasing the average solution 

deviation between the TTM and the MG heuristics from 0.37% to 0.63%. But, it was also 

noticed that use of the SM algorithm could occasionally lead to a better solution and/or 

increase total MG computation time (both results due to the impact of the improvement 

algorithms). 

Prior to our testing, we anticipated that the DS heuristic would be the fastest of the 

heuristics. Thus, the relatively slow computation time of the DS heuristic, particularly on high 

TBO problems, was surprising. Consequently, we analyzed the DS times in greater detail. Of 

the total DS computation time, about 70% was due to its improvement algorithm. Therefore, 

a significant time reduction would be achieved by elimmating this algorithm. However, the 

average improvement resulting from utilizing the improvement algorithm was about 1.4% and 

0.8% for the high and low TBO problems, respectively. As a result, eliminating the algorithm 

would more than double the percent deviation between the DS and MG heuristics, and the 

solution time of the basic DS heuristic would still be greater than that of the MG heuristic. 

Generally, with respect to both solution quality and computation time, the MG heuristic 

dominated the performance of the DPA heuristic and, on average, it outperformed the DS 

heuristic. As previously noted, it was only for problems with both very high TBO and 
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capacity utilization that the DS heuristic's solutions were competitive, but always at the 

expense of additional computation time. Furthermore, in comparison to the TTM heuristic, 

the MG heuristic tended to generate similiar solution costs at a small fraction of the TTM 

computation time. However, for problems with significant setup time, high TBO, and very 

high capacity utilization levels (i.e., marginally feasible problems), the TTM heuristic tended 

to produce significantly better solutions, but always at a major computational increase. 

The code used in our testing as well as the problem generator are available from the 

authors. 

5. Conclusion 

This paper presented the MG heuristic, a fast heuristic for solving CLS problems, with 

or without setup time. Also presented was large-scale testing that evaluated the performance 

of the MG heuristic and three other leading heuristics on realistic CLS problems. Testing 

used 216 randomly generated problems that included several groupings of problem sizes as 

well as varied levels of capacity utilization and average TBO. One-half the problems tested 

were problems with significant levels of setup time. 

Test results were favorable for the MG heuristic. On the randomly generated problems 

without setup times, overall results of the testing (for both high and low TBO problems) 

indicate that the MG heuristic yielded cost solutions 1.03% better, on average, than the next 

best fast heuristic (DS), and it did so at a reduced computational expense. Furthermore, on 

the same problems, the MG heuristic achieved solutions that averaged just 0.47% above the 

solutions achieved by the computationally complex heuristic tested (TTM), and on average it 

obtained the solutions at 0.027 the computation time. 
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On the problems vnth setup time, the MG heuristic also performed well. In comparison 

with TTM, it generated solutions that were on average (for both low and high TBO problems) 

1.24% higher, at only 0.024 the average computation time. 

Overall, on all 216 problems tested, the MG heuristic achieved feasible cost solutions 

just 0.86% higher than the TTM heuristic. Furthermore, for even the largest problems tested 

(4000 items and 25 periods), the computation time for the MG heuristic averaged (over 24 

problems) about one minute of CPU time on a DECstation 5000/200 workstation. This 

indicates that the MG heuristic is fast enough and accurate enough for most "real world" CLS 

problems, with or without setup time. 
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Appendix I ~ Modifications of the DS Heuristic 

The basic DS heuristic (which was supplied by Dr. Luk Van Wassenhove, E^SEAD) 

was modified to include the capability of solving CLS problems that include setup times. The 

reader is referred to the original article [10] for a detailed discussion of the basic DS heuristic. 

While significant modifications to the code were required to extend the basic DS 

heuristic to include the capability of solving problems with setup times, most of the changes 

were more of an accounting nature, e.g., change the calculation of capacity consumption, 

modify the marginal benefit calculations to reflect the correct amount of capacity consumed by 

a particular lot size, etc.. However, the primary complexity was related to the issue of the 

forward feasibility check. The issue, for problems with setup times, is as follows: What 

amount of capacity should be reserved for setup time in future periods to avoid an infeasible 

overload of capacity? Several approaches were examined, but our approach uses lot-for-lot 

setup times, i.e., for each demand in forward planning periods, a corresponding setup time is 

associated. This is a conservative approach that initially assumes that no batching will occur 

(which lessens setup time requirements). Its major problem is that for tightly constrained 

problems, the modified DS heuristic will tend to make a number of non-economic batching 

decisions and maximize the use of production capacity in the earlier production periods. 

However, it tends to generate an mitial feasible solution as its starting point and did not 
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require significant amounts of lot size manipulation to achieve feasibility. Also, the problem 

of the modified DS heuristic moving more production than necessary into the earlier 

production periods tends to be corrected by the MG heuristic's forward improvement 

algorithm. 

Appendix n - DS Algorithm Computational Improvement 

The computational efficiency of the DS improvement algorithm was increased by 

reducing needless computations. Specifically, after each lot size elimination, the immodified 

DS improvement algorithm incorporates the new slack capacity information for the affected 

periods and recalculates the potential cost savings for every potential lot elimination. We 

avoid this complete recalculation effort by partitioning the lot elimination possibilities into two 

subsets; (1) those whose calculations are not valid after the last elimination was implemented; 

and (2) those whose expected cost savings are still valid. This partitioning is based on where 

the potential lot elimination is in the lot size production matrix (items * production periods) 

relative to the location of the lot just previously eliminated. If the movement of the eliminated 

lot (e.g., fi"om period 7 to period 4) does not overlap the potential movement of the possible 

lot elimination (e.g., fi-om period 12 to period 9, or fi-om period 3 to period 1), then the 

previous cost calculation for the possible lot elunination is still valid — thus no need to 

recalculate. 

Appendix EOL ~ Random Problem Generator Capacity Determination 

Our random problem generator was modified to use the average capacity calculated by 

the original generator, Diaby et al. [7], for periods two and up and use this as the capacity 

basis for all the periods. The modified generator calculates the capacity level for each period 

as being normally distributed around the average, with the variance level at one-sbcth the 
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average value. Then, as a feasibility check for period one only, the generator adds the total 

production time of the items demanded in period one plus any required period one setup time 

and compares this value to the first period's randomly generated capacity level. If the required 

level is higher than the capacity level, then the first period capacity level is increased to 1.03 

times the required level and the amount of the increase is reduced uniformly fi-om the last 

three production periods (so as to not change the total capacity). Unfortunately, for tightly 

constrained problems, this does tend to produce a small upward bias to the first period's 

capacity level, but it reduces the number of infeasible problems generated and the amount of 

upward bias is significantly less than the amount of bias contained in the unmodified 

generator. 

Appendix IV - CLS Problem Feasibility/Infeasibility 

CLS problems with setup tune where feasibility is questionable should only include those 

with the following characteristics: (1) the cumulative sum of processing time and lot-for-lot 

setup time in periods one to the end of the production horizon exceeds the cumulative 

capacity for at least one of the periods - otherwise the problem is clearly feasible: (2) the sum 

of processing time and setup time for the items demanded in period one is less than the 

available capacity in period one — otherwise the problem is clearly infeasible; and (3) for 

periods one through the end of the production horizon, the cumulative total of the processing 

time per period (without backlogging and the inclusion of setup time) is less than the 

cumulative amount of capacity av^able per period - otherwise the problem is clearly 

ii^easible. 
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CHAPTER m. A WAGNER-WHTTIN BASED HEURISTIC FOR SOLVING 

DYNAMIC, CAPACITATED, LOT SIZING PROBLEMS 

A paper submitted to the 4th International IE Research Conference 

Robert J. McCoy and Douglas D. Gemmill 

Industrial and Manufacturing Systems Engineering Department 

Iowa State University, Ames, lA 50011 

This paper discusses the development and testmg of a fast, new heuristic for solving 

multiple item, multiple period, dynamic capacitated lot sizing problems. 

Keywords; Lot Sizing, MRP, Heuristic. 

INTRODUCTION 

The Capacitated Lot Sizing (CLS) problem is a common and important industrial 

inventory control problem that involves determining medium-range production planning lot 

sizes for items that share a common capacity constraint, e.g., in a MRP production 

environment. Specifically, the problem consists of scheduling for multiple periods the 

production timing and quantity of multiple items so as to minimize the sum of both setup and 

linear holding costs while satisfying demands (without backlogs) and adhering to the capacity 

constraints associated with a single resource. The capacity constraints and product demands 

may be time-varying, but are assumed to be deterministic. Furthermore, item setup cost and 

setup time (if required) are incurred in each period that a particular item is produced. For a 

mathematical definition of the CLS problem without setup times and a detailed review of 

associated solution methodologies, the reader is referred to two reviews (Bahl et al., 1987; 

and Maes and Van Wassenhove, 1988). 
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Presented below is a discussion of a new heuristic for solving CLS problems. Hereafter, 

this heuristic will be referred to as the MG heuristic. Following this, we provide test resuhs 

associated with applying the MG heuristic and a number of other heuristics to both a set of 

CLS problems avmlable from the liturature and new, randomly generated, large-scale 

problems. 

THE MG HEURISTIC 

The new MG heuristic has three main sections: (1) Wagner-Whitin algorithm and 

feasibility attaiimient subroutine; (2) a modified Dixon and Silver (1981) heuristic; and (3) 

improvement algorithms. Note: The MG heuristic is capable of solving CLS problems with 

significant levels of setup time. However, due to space limitations, this capability will not be 

discussed. 

The MG heuristic starts by ignoring the capacity restrictions and uses the basic Wagner-

Whitin (WW) dynamic programming algorithm to optimally solve the resuUmg uncapacitated 

lot sizing problem. Then, after reinstalling the capacity restrictions, a feasibility check is 

performed. Typically, except for trivial problems, the WW solution is infeasible. If it is 

feasible, the heuristic ends with the retained WW solution. 

The heuristic then utilizes a modified version of the Trigeiro (1989) "smoothing" 

subroutine from their TTM heuristic to seek feasibility. This modified code does not utilize 

dual prices of capacity, as does the original code. It merely seeks to obtain an initial feasible 

solution that satisfies capacity constraints using the WW generated lot sizes as a starting 

point. It does this by making, if necessary, muhiple backward and forward passes to shift fiill 

or partial lot sizes out of periods that are overloaded with respect to capacity. However, the 

smoothing routine does not guarantee a feasible solution will be found (our tests indicate that 

a feasible solution is generally found). If the "smoothed" WW solution is not feasible, then 
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feasibility is sought using the basic Dixon and Silver (DS) heuristic (with a perturbation factor 

of 0.0 — see discussion below). Use of the DS heuristic guarantees a feasible solution will be 

found to a feasible problem. 

The next step of the MG heuristic depends on the size of the CLS problem being solved. 

If the CLS problem is 200 items or larger in size, the MG heuristic proceeds directly to the 

improvement algorithms. However, if it is a small problem, the modified DS heuristic is used. 

Note: for larger CLS problems, the DS heuristic is only used if the WW and related 

"smoothing" procedure fails to obtain an initial feasible solution. 

The basic DS heuristic (which was supplied by Dr. Luk Van Wassenhove, INSEAD) 

was modified to allow for the generation of multiple, feasible solutions to a particular CLS 

problem through the use of what we refer to as perturbation factors. (It was also modified to 

solve CLS problems that include setup times.) Because the DS heuristic quickly solves small 

CLS problems, this modification often provides the user with improved solutions at a small 

computational cost. The reader is referred to the original article by Dbcon and Silver (1981) 

for a more detailed discussion of their basic heuristic. 

The perturbation factors included in the modified DS code are simply cost multipliers 

applied to the holding cost portion of the lot sizing utility benefit calculations used in the DS 

heuristic. Each time the marginal benefit of batching a particular production lot is calculated, 

the perturbation cost factor often has the effect of modifying (m close or tie breaker 

situations) the choice of the next item selected for increasing its lot size, as well as influencing 

the total amount of batching. The use of multiple factors allows the user to iteratively 

generate multiple initial feasible solutions, apply improvement algorithms, and retain the 

lowest cost solution obtained. Perturbation factors of -3, -2,..., 2, 3 were used for the 

phase 1 testing discussed later in this paper. Note that the use of a perturbation factor of 0.0 

means that the modified DS heuristic will obtain the same solution as the origmal DS heuristic. 



www.manaraa.com

51 

Phase 2 testing, because the testing involved large problems, did not use perturbation factors. 

More detail on the use of perturbation factors ui conjunction with the DS heuristic is provided 

in McCoy and Gemmill (1994). 

The third (and last) main section of the MG heuristic involves the use of three 

improvement algorithms. These improvement algorithms are run in series and include a 

modified version of the improvement algorithm supplied with the basic DS heuristic and 

forward and backward adjustment improvement algorithms. These algorithms adjust the lot 

sizes contained in the best feasible solution achieved to that point with the objective of 

maintaining feasibility while lowering total costs (setup and holding). After running the 

improvement algorithms, the MG heuristic recalls the best solution achieved and terminates. 

The first of the improvement algorithms used by the MG heuristic is a modified version 

of the DS improvement algorithm supplied by Dr. Van Wassenhove, which implements 

possibilities 1 and 4 of the improvement algorithm described in Dixon and Silver (1981). It 

was modified to account for the impact of setup time and improve its computational 

efficiency. 

In addition to the basic DS improvement algorithm, the MG heuristic uses two other 

improvement algorithms. These algorithms also start with the best, feasible lot sizing solution 

generated to that point in time and look for improvement in the final solution cost by adjusting 

certain lot sizes (complete or partial) forward or backward in time. The first of these 

improvement algorithms, called the "Forward Adjustment' algorithm, begins by checking for 

extra item inventory that is needlessly being carried and that could be shifted to a later 

production period to lower total planned costs. It is a period by period, multiple pass, review 

(starting in period one). It seeks to lower total costs by reducing holding costs ~ possibly at 

the expense of additional setup cost, unlike the basic DS improvement algorithm. 
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The last of the three improvement algorithms is called the "Backward Adjustment' 

algorithm. It deals with cost effectively eliminating some production setups by shifting 

production of one or more items back to an earlier production period. Unlike the basic 

improvement algorithm of Dbcon and Silver, the Backward Adjustment algorithm does not 

restrict itself to simply eliminating a particular lot size and shifting it back in time to a period 

that already has a lot scheduled and that has adequate capacity. If adequate incremental 

capacity exists and it appears cost effective to do so, the algorithm will overload a particular 

period's capacity and then use the modified DS heuristic to regmn feasibility by shifting 

production into an earlier production period(s). This opens up improvement possibilities that 

are not avmlable to the basic DS improvement algorithm. A more detailed discussion of both 

the forward and backward improvement algorithms, as well as flowcharts, are provided in 

McCoy and Gemmill (1994). 

PHASE 1 TESTING 

The first phase of testing used a set of 15 problems firom Eppen and Martin (1985), 

called the Eppen and Martin, or E&M, problems. These relatively small problems (without 

setup time) were used to establish a performance baseline for the tested CLS heuristics on a 

known set of readUy available problems. These 15 problems were segregated into two 

categories, TVW* and DS*. TVW* includes the following problems: TVWl; TVW2; 

TVW3; TVW4; TVW50; TVWIOO; and TVW150. DS* includes the following problems; 

DSBASE; DSl 15L; DSl lOL; DS105L; DSIOOM; DS199T; DS198T; and DS200M. The size 

of these 15 problems varies from 8 to 200 items and from 8 to 13 periods, with the largest 

problem being 200 items and 10 periods. 

The CLS heuristics tested in phase 1 include the following; LV (Lambrecht and 

VanderVeken, 1979), DS (Dbcon and Silver, 1981), DPA (Dogramaci, et al., 1981), TTM 
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(Trigeiro, Thomas, and McClain, 1989), TVW (Thizy and Van Wassenhove, 1985), SLR 

(Diaby et al., 1992) with two sets of run control parameters, and the MG heuristic. 

Additionally, the integer programming branch and bound solutions of Eppen and Martin 

(E&M), 1985, are provided. Computer implementations of the LV, DS and DPA heuristics 

were supplied by Dr. Luk Van Wassenhove, INSEAD. The other heuristics were supplied by 

their respective authors. 

The SLR heuristic requires explanation. The SLR heuristic is controlled by ten run 

control parameters (step size, reduction coefficient, improvement factor, transportation 

factor, etc.). Using the parameters listed in Diaby et al. (1992), we were not able to 

reproduce the published results. This is due to an error in the paper. The transportation 

factor for all problems except DS200M should be 0.9 rather than the published 0.8 (page 

1333). Also, in order for the heuristic to obtain a feasible solution for DS200M, a 

transportation factor of 0.05 was recommended for this one problem only [Diaby, private 

communication, 1994]. 

Using these two transportation factors as indicated, we were able to duplicate their 

published results. However, since it is not possible to know a priori which parameter to use 

on a newly generated or previously unstudied problem, we twice applied the SLR heuristic to 

all 15 E&M problems ~ using transportation factors of 0.9 and 0.05. Use of these two factors 

often resulted in different solutions and computation times. Thus, our SLR test results are 

grouped under two names, SLRl and SLR2. 

Table I summarizes the results of phase 1 testing. Results are segregated by solution 

quality (average percent deviation from the best available solution) and computation time 

(total CPU seconds on a DECstation 5000/200). Not surprisingly, the E&M solutions were 

the lowest (average) cost. However, the computation time of this integer programming 

approach is excessive. Eppen and Martin (1985) report requuing 38,125 seconds (10.6 
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TABLE I 
EPPEN AND MARTIN BASELINE PROBLEMS 

AVERAGE PERCENT DEVIATION FROM THE BEST SOLUTION AVAILABLE: 

NO. OF 
PROB. PROS LV DS DPA MG TTM E&M TVW SLRl SLR2 
TVW*: 7 5.02 4.09 4.45 1.23 0.53 0.22 2.14 5.11 4.22 
DS*: 8 1.94 1.41 0.77 0.47 0.21 0.02 N/A 0.42 0.66 

TOTAL rPECSTATION S000'> CPU SECONDS REQUIRED TO SOLVE ALL IS PROBLEMS: 

4^ 
NO. OF 

PROB. PROB. LV DS DPA MG TTM E&M TVW SLRl SLR2 
TVW*: 7 0.7 0.8 6.8 7.8 15.3 N/A 6.5 10.3 50.9 
DS*: 8 1.6 1.7 2.7 11.4 49.7 N/A N/A 58.0 74.3 
TOTAL 15 2.3 2.5 9.5 19.2 65.0 N/A(l) N/A 68.3 125.2 

(1) Eppen and Martin solution times on a VAX 750 totaled 38,125. seconds 
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hours) of VAX 750 CPU time to solve the 15 relatively small problems. This amount oftime 

highlights the importance of using heuristic solution procedures. 

The next best sets of solutions were provided by the TTM heuristic, using 100 iterations 

of their primal-dual solution methodology (Lagrangean dual costs are iteratively updated by 

subgradient optimization) as they recommended for problems without setup time (Trigeiro et 

al., 1989). Its solutions deviated from the best available solution by an average of only 0.53% 

and 0.21%, for TVW and DS problems, respectively. Furthermore, the total computation 

time for all 15 problems is a much more reasonable 65.0 seconds of DECstation 5000/200 

CPU time. 

The MG heuristic is one step below the TTM heuristic in terms of solution quality. On 

these small problems, using the "smoothed" Wagner-Whitin procedure as well as 7 iterations 

of the modified DS subroutines contained in the MG heuristic, the MG heuristic achieved 

solutions that deviated from the best available by 1.23% and 0.47%, respectively, on the TVW 

and DS problems. And, its total computation time was 19.2 seconds. In contrast, the LV and 

DS heuristics were the fastest tested — either required less than 2.5 seconds of total CPU 

time. However, the 'price' of this speed is reduced solution quality ~ their average percentage 

deviation was three to four times greater than the MG heuristic's deviation. 

In comparison with the DS and LV heuristics, the DPA heuristic did relatively well on 

the DS group of problems and relatively poorly on the TVW problems (in both solution 

quality and computation time). The primary reason for this is the poor performance of the 

DPA heuristic on the relatively tightly constrained TVWl and TVW2 problems (DPA works 

best on loosely constrained problems). 

On average, the computationally complex TVW and SLR Lagrangean Relaxation 

heuristics did not perform as well as the TTM or MG heuristics, particularly on the TVW 

problems. The TTM heuristic's superior performance relative to the TVW heuristic is 
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consistent with the results reported by Trigeiro et al., (1987). However, the SLRl and SLR2 

heuristic results are somewhat surprising. The heuristic performed very poorly on the TVWl, 

TVW2 and TVW3 problems. And, more significantly, neither SLRl nor SLR2 achieved 

feasible solutions on all 15 problems. SLRl, with a transportation factor of 0.90, did not 

identify a feasible solution to DS200M; SLR2, with a transportation factor of 0.05, did not 

identify a feasible solution to DSIOOM and DS198T. Furthermore, as can be seen in Table I, 

the solutions and computation times achieved by the SLR heuristic were highly affected by 

changing just the one run control parameter. Consequently, the robustness of the SLR 

approach is questionable. 

On the basis of the overall results provided in Table I, we included the DS, MG, and 

TTM heuristics into the phase 2 testing (which used larger, randomly generated problems). 

The LV heuristic was omitted because it was only marginally faster than the DS heuristic, yet 

tended to produce poorer solutions. The TVW and SLR heuristics were omitted because, on 

average, they did not perform as well or as reliably as the TTM heuristic, which produced 

very good lower bounds in addition to good solutions. Furthermore, testing of the TTM 

heuristic on larger problems was desired — previously reported testing (Trigeiro, et. al., 1987 

and 1989) was limited to problems of no more than 36 items. Finally, the DP A heuristic was 

omitted because its computational complexity is such that it is not well suited for large 

problems. 

PROBLEM GENERATOR 

The random problem generator used for Phase 2 testing was a modified version of the 

generator used by Diaby, et al. (1992) for their very large scale testing. The reader is referred 

to their article for details relating to the basic generator. With respect to generating problems 

without setup time, our significant modifications to the problem generator are as follows; 
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(1) Production time, rather than being constant at 1.0 per unit demand was allowed to vary 

normally around a mean value of 1.0. (Variable production times are more common in actual 

production settings.) 

(2) We allow the user to approximately specify the average setup cost and carrying cost 

levels by varying a setup cost factor and a carrying cost factor, respectively. These two 

factors, which must be positive real numbers, are included in the problem generator run 

control file. These run control factors allow the user to influence the generated problem's 

level of time between orders (TBO), defined using the standard mathematical definition (see 

Maes and Van Wassenhove, 1988). 

In addition to the setup cost and carrying cost factors, our problem generator retains the 

original generator's capability of modifying two other run control factors: demand variability 

and capacity constraint tightness. For our testing, the capacity constraint tightness factor was 

set to generate relatively tightly constrained problems (target utilization was 90%) and the 

demand variability factor was set to a high level, i.e. two times the variability used by Diaby, 

et al. (1992). This increased the 'lumpiness' of the item demands and contributed to problems 

that are more representative of'real life' MRP component demand schedules. 

PHASE 2 HEURISTIC TESTING 

Our phase 2 testing was designed to determine the relative performance of the three best 

heuristics fi-om phase 1 on larger, randomly generated, problems. The testing involved the 

random generation of 12 problems without setup time, each containing 500 items and 26 

production periods. After omitting the last four production periods (to reduce end of horizon 

effects), their capacity utilization ranged fi'om 88% to 95%, with an average value of 90.6%. 

The overall TBO of these problems ranged fi-om 2.71 to 3.97, with an average value of 3.52. 
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Note that item TBO values, as would be expected in a typical production environment, often 

varied significantly around their overall problem TBO average. 

As before in phase 1 testing, the TTM heuristic was run for 100 iterations. However, 

because the phase 2 problems are all large problems, the MG heuristic only used its modified 

DS heuristic subroutines (with a 0.0 perturbation factor) if the initial, "smoothed" WW 

solution was not feasible. 

Phase 2 test results are provided in Table II. The resuhs are segregated into two areas; 

(1) solution quality; and (2) computation time on a DECstation 5000/200 workstation. The 

heuristic abbreviations are as previously indicated. The "LB gap' (lower bound gap) is defined 

as the percentage difference between the Lagrangean lower bound and the best solution 

achieved. 

With respect to overall solution quality, the computationally complex TTM heuristic 

outperformed the MG and DS heuristics. Furthermore, its solution quality is quite good. For 

the 12 problems, its solutions averaged significantly less than one percent above the lower 

bound cost. However, the solutions achieved by the MG heuristic were also quite good — its 

cost solutions averaged just 0.61% above the solutions achieved by the TTM heuristic and it 

generated average solution costs that were 1.37% lower than those of the DS heuristic. 

There were significant differences among the three heuristics' performances with respect 

to computation time. The TTM heuristic, not surprisingly, was the slowest tested — its 

average computation tune was 181 seconds. In contrast, the MG heuristic averaged S.S 

seconds. But, we were surprised by the relatively slow computation time of the DS heuristic. 

Prior to our testing, we anticipated that the DS heuristic would be the fastest of the Phase 2 

heuristics. Consequently, we analyzed the DS computation times in greater detail. Of the 

total DS time, about 63% was due to the improvement algorithm. Therefore, eliminating this 
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TABLE n 
RANDOMLY GENERATED PROBLEMS 

500 ITEMS AND 26 PERIODS (1) 

COMPARISON OF THE MG. TTM AND DS HEURISTICSt 

SOLUTION QUALITY: 

NO. OF AVERAGE PERCENT DEVIATION RANGE OF SOLUTION RATIOS 
PROB MGvs TTM MGvs. DS L B. GAP MG/TTM MG/DS 

12 0.61 -1.37 0.88 0.9962-1.0156 0.9816-0.9914 

COMPUTATION TIME; 

NO. OF AVERAGE CPU SECONDS (1\ CPU TIME RATIOS 
PROB. MG TTM DS TTM/MG DS/MG 

12 5.5 181.0 26.6 32.9 4.8 

(1) TBO Average Equals 3.52 and Average Capacity Utilization Equals 90.6% 
(2) On a DECstation 5000/200 Workstation 
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algorithm would signiiScantly reduce the DS computation time. However, use of the 

improvement algorithm reduced average DS solution costs by 1.1%. As a result, eliminating 

the algorithm would signijScantly increase the average percent deviation between the DS and 

MG heuristics (from 1.37% to 2.47%), and the average computation time of the basic DS 

heuristic would still be greater than that of the MG heuristic (9.6 seconds for DS versus 5.5 

seconds for MG). 

CONCLUSION 

In this paper, a fast, new CLS solution mtheodology, called the MG heuristic, was 

presented and test results provided. These test results were favorable for the MG heuristic. 

On average, for all 27 problems tested, its solutions were 2.1% better than those of the well-

known DS heuristic and just 0.7% above the solutions achieved by the computationally 

complex TTM heuristic. And, on the larger, randomly generated problems, the MG heuristic 

required about 21% and 3% of the DS and TTM heuristics' computation time, respectively. 

While additional testing is required, these results seem to indicate that the MG heuristic is fast 

enough and accurate enough to be used in realistically sized, "real life" production 

environments. 
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HEURISTIC USING COST ADJUSTMENTS AND SIMULATED ANNEALING 

A paper submitted to HE Transactions 

Robert J. McCoy and Douglas D. Gemmill 

Industrial and Manufacturing Systems Engineering Department 

Iowa State University 

Ames, lA 50011 

In this paper, we investigate a new lot sizing heuristic for multiple echelon, assembly 

production systems with capacity constraints. More specifically, the new heuristic utilizes 

multiple iterations of a sequential top-down approach that combines single echelon, dynamic, 

capacitated approaches with a feedback mechanism to higher echelons. Additionally, the 

heuristic uses two cost modification procedures. First, it incorporates the KCC procedure 

developed by Blackburn and Millen. Second, holding cost adjustment factors, one for each 

echelon, are available for application to each item on a particular echelon. These factors were 

developed by the authors and assist the heuristic in finding a feasible solution to capacitated, 

problems. Then, the best (lowest solution cost) combination of factors is explored with a 

simulated annealing heuristic. In comparison to heuristics without cost adjustments and 

feedback mechanisms, significant cost reductions were obtained for both capacitated and 

non-capacitated, randomly generated problems. 

Production lot sizing in a multiple echelon production system is a common and important 

task. This general problem is commonly known as the cascading lot sizing problem. A 

material requirements planning (TMRP) system is an example of the type of environment where 

these tasks must routinely be performed. As discussed in Billington et al. [2, 3], Kuik et al. 

[9], Maes and Van Wassenhove [10], and Blackburn and Millen [4], this type of production 

planning problem is very difficult due to the complex interdependencies that exist between lot 
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size decisions made on each echelon. This is particularly true for assembly product structures 

with capacity constraints on one or more of the lower echelons. 

The conventional MRP solution methodology handles the capacitated multiple echelon 

problem in a rather primitive manner. Using this methodology, capacity restrictions are 

initially dropped. Then, lot size decisions are generally determined using simple lot sizing 

(non-capacitated) heuristics, starting at the top echelon (the one associated with independent, 

end item demand) and proceeding sequentially down the product structure. Lot sizing 

decisions are made one echelon at a time, with the production lot sizing decisions at each 

echelon determinmg the dependent demand schedule of the echelon just below it. Then, 

capacity constraints are reimposed and Capacity Requirements Planning (CRP) procedures are 

followed. These CRP procedures check the MRP generated lot sizes and determine if the plan 

is feasible with respect to capacity restrictions. Unfortunately, it often is not, and an iterative 

(trial and error), labor intensive process of using MRP/CRP procedures is required before a 

feasible plan is generated. 

In this paper, we consider the muhiple echelon, capacitated lot sizing problem for 

assembly product structures. Furthermore, we allow various levels of capacity restrictions on 

each of the production echelons, lumpy demand, positive item setup costs and times, and 

variable item processing times. Additionally, we allow item capacity absorption ratios to vary 

from echelon to echelon. However, we do not consider overtime work or item lead-time 

considerations. 

The multiple item, multiple echelon capacitated lot sizing problem for assembly product 

structures consists of scheduling production of all end items and their components on M total 

echelons over a horizon of T periods. Demands for the end items on echelon one are 

deterministically known and no shortages are allowed at any echelon. The objective is to 

minimize the sum of setup and inventory holding costs for all items on all echelons without 
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creating item shortages or violating any capacity constraint associated with a particular period 

at each echelon. Consistent with the formulations of Billington et al. [3], but without 

provisions for lead times, the mathematical problem is as follows: 

N  T  
Objective Function: min 2 S (sc.Y. + hc.IJ 

,=1 /=! ' " ' 
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"I N; 

Z (st.Y^ + pt,X,.p^C^ 

t = l  ! •  *  1 ,  X ,  

K  =  k = l , . . . , M ;  / = 1 , T .  

X. it' 
•it 

U; 

- B ^ 0 
1/7  ̂ 0 
e {0,1} 
e {0,1} 

/ = ! , .  ..,N; t = \ , .  ...T 
/=1,. ..,N; t = \ , .  ..,T 
/  =  1 , .  ..,N; t = \ , .  ..,T 
/• = 1,. ..,N; j = h -..,N 

where: 
N 
S C j  

St/ 
pt/ 
hcy 
d/Y 
K 

Ckt 
'̂ it 
Uy 
X// = 

1/7 
B 

= Number of items in the production system 
= Set-up cost for end item / 
= Set-up time for end item / 
= Processing time required to produce one unit of item / 
= Holding cost for end item i 
= External demand for item / in period t 
= Set of items on echelon number equal to K 
= Maximum available capacity at echelon k in period t 
= Set-up variable of item / in period t (i.e., 1 = setup; 0 = no setup) 
= Usage variable related to whether item / is required to make j 
= Production quantity of item / in period t 
= Amount of item / in inventory from period / to 
= Big positive number 

Note that in the above formulation, we do not allow for component part commonality. 

That is, no part may have more than one parent (higher echelon) part. Specifically, the 

number of units from any echelon k required in the production of one unit at the immediate 

successor echelon (A;-l) is assumed to be constant and equal to either zero or one. As noted 

in Kuik et al. [9], this causes no loss in generality since any assembly problem with usage 
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factors that are multiples of one unit can be easily transformed into an equivalent assembly 

problem with usage factors no greater than one. 

Capacity restrictions significantly complicate multiple echelon lot sizing. The amount of 

capacity restriction on each echelon relative to the other echelons is critical, solution feasibility 

is difBcult to determine and the addition of setup time is significant because it consumes a 

portion of the limited capacity. However, most production situations are capacitated and 

significant amounts of setup time are often required. Thus, while optimum solutions are not 

obtainable for realistically sized problems, unproved lot sizing tools for this environment are 

required. 

A number of procedures for solving capacitated, multiple echelon problem have been 

proposed. For research prior to 1987, the reader is referred to Bahl et al. [1]. Since 1987, 

Kuik et al. [9] proposed linear programming (LP), simulated annealing (SA) and Tabu Search 

(TS) heuristics for solving lot sizing problems relating to assembly systems. In their study, 

they reduced the overall problem complexity by limiting the production structures to six or 

seven items spread over three echelons, only the middle echelon was capacitated, all three 

levels used the same time between order (TBO) levels (either 2, 3, or 4) to generate item 

setup costs, and no setup times were allowed. They concluded that the TS and S A heuristics 

outperformed the LP heuristics and that SA slightly outperformed TS. However, for even 

their fastest heuristic, the sbc and seven item problems averaged about 90 to 100 seconds of 

Sun 3 workstation CPU time. With respect to solution quality, the best method (SA) 

generated solutions that averaged 12 to 23 percent above the lower bound obtained by solving 

the LP relaxation of the problem. No comparison to results obtained with single level 

heuristics was provided. 

In Billington et al. [2], the authors study capacitated multiple echelon serial systems and 

solve associated lot sizing problems using modified single echelon heuristics such as Dixon 
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and Silver that are applied sequentially to each production echelon (top down). They 

modified the single level heuristics' feasibility routines to work in multiple echelon 

environments and used several of the Blackburn and Millen [4, 5] cost adjustment procedures 

(e.g., KBB and KCC). Besides limiting their study to serial product structures with no more 

than 12 end items and 5 echelons (60 items), they also used a simplifying assumption that the 

items have proportional processing times across echelons, i.e., if item A requires twice as 

much capacity as item B on echelon 1, then A must also require twice as much capacity as B 

on all other echelons. This rather severe restriction allows for the implementation of relatively 

simple multiple echelon feasibility checks. Nevertheless, their results indicate that the 

Blackburn and Millen cost adjustment procedures can provide a significant enhancement to lot 

sizing heuristic performance. 

Heuristic For Capacitated Assembly Systems 

The multiple echelon lot sizing heuristic developed as part of our research is hereafter 

referred to as the MELS heuristic. It uses multiple iterations of single echelon, capacitated, 

lot sizing heuristics within its overall solution methodology. The specifics of which heuristics 

were used will be provided later. As with conventional MRP approaches, the heuristic 

solution procedure starts with the top (end item) echelon of the product structure and 

sequentially solves the echelon lot sizing problems. For echelons below the top echelon, if 

infeasibilities result fi'om higher echelon decisions, a subroutine is called that adjusts higher 

level lot sizes (at one or more echelons) forward in time, without creatmg shortages. The 

purpose of the upward, forward, adjustment is to decrease capacity requirements in the earlier 

production periods of the lower level(s). It is a myopic, greedy adjustment that seeks to move 

an adequate amount of production forward in time with the minimum amount of cost. At the 
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completion of lot sizing at the lowest echelon of the assembly product structure, if upward 

adjustments of lot sizes were required, the heuristic does a final review of all created lot sizes. 

This review starts at the top echelon and proceeds down the product structure, one echelon at 

a time. It performs the following tasks: (1) checks for and attempts to correct capacity 

overloads, first through forward, then backward, production shifts; (2) eliminates non-

economic setups by a forward production shift, if such shifts do not violate capacity or 

demand constraints; and (3) establishes the correct dependent item demand schedules for each 

echelon (below the top level). Then, following this review, if a feasible solution has been 

obtained, the heuristic calculates the total multiple echelon cost. 

The heuristic also uses (or has the capability of using) two cost modification procedures. 

First, the KCC cost adjustment methodology of Blackburn and Millen [4, 5] was included in 

the heuristic. Although it was not designed for multiple end item, dynamic capacitated 

problems, we included this multiple echelon methodology because we believed it offered the 

potential for improved solutions, particularly for problems without tight capacity constraints. 

The KCC method assumes constant item demand and does not take capacity restrictions 

into account. It attempts to consider the inter-relationships in lot size decisions across 

echelons. The logic behind their approach is related to the fact that since setups at a particular 

echelon generate demand for the echelon just below, lot sizes at the lower echelon are 

impacted. Thus, their method modifies both setup and holding costs used in upper echelon lot 

sizing decisions in order to at least partially reflect cost impacts on lower echelons. 

Consequently, their methodology reduces the myopic behavior of sequentially applied, single 

echelon, lot sizing heuristics. 

The KCC approach uses K-factors, which are estimates of the number of orders of a 

parent part which will be combined at the children's level. More specifically, if the echelons 

are numbered sequentially firom one, two,..., starting at the top echelon, the Kjj (K-factor for 
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part i on echelon j) is an estunate of the number of orders of the parent part of i (on echelon j-

1) which will be combined into a single order at echelon j. Note that Ky may not be less than 

1, otherwise this would imply that shortages will be created. Mathematically, the KCC 

methodology is as follows: 

where: 
C jj = children of item i on level j 
Pjj = single immediate successor (parent) of item i on echelon j 
Sjj = unmodified setup or ordering cost for item i on echelon j 
hcy = fiill value holding cost for item i on echelon j 
ey = unmodified echelon holding cost for item i on echelon j 

Dy = average item i demand on echelon j 

Spij = modified setup or ordering cost for item i at echelon j 

ejkj = modified echelon holdmg cost for the parent item of item i on echelon j 

The order of calculation of the modified cost S and e are j=M, M-1,... 1. Therefore, the 

values of Kjj consider cost information firom all its predecessor echelons. 

When the KCC modification is used, the modified setup and holding costs that it 

calculates are temporarily used by the MELS heuristic to sequentially develop the single 

echelon lot sizes. Then, at the completion of the lot sizing tasks, the modified costs are 

replaced by the original costs and the total multiple echelon cost is calculated. 

The second cost modification included in our multiple echelon heuristic is a technique of 

using holdmg cost adjustment factors. For a problem with M echelons there are M factors, 

one for each echelon. These adjustment factors (Fj) are applied to each item's holding cost as 

follows: 

|((Sij/Six.)(ei../eij))^ 1 ®ij ^ ̂ hcm) 
meCij 

Sjx. + Z 
y meCij 
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hCij=hcij*(l-0 + Fj) i=l....,Nj; j = l M 

where; 
M = total number of echelons 
Nj = number of items on echelon j 

hcjj = revised holding cost for item i on echelon j 
hCy = initial holding cost without Fj adjustment for item i on echelon j 
Fj = holding cost adjustment factor for echelon j 

These adjustment factors are real numbers. For our test problems, they were in the range 

of ±40.0, and usually ± 10.0. These factors were developed for use in the MELS heuristic to 

assist it in finding feasible, low cost solutions to capacitated problems. The rationale behind 

their use is to influence the single level capacitated heuristic(s), used within the multiple 

echelon methodology, to shift lot sizes to the left (with a negative Fj value, which encourages 

larger lot sizes) or to the right (with a positive Fj value, which encourages smaller lot sizes). 

Note that the use of Fj values, as well as the KCC modifications, only impacts production lot 

sizing decisions and feedback mechanisms. When total multiple echelon costs are calculated, 

the original, actual setup and holding costs are used. 

Two examples of situations that benefit fi-om the use of the holding cost adjustment 

factors are provided. The first example situation benefits from using a positive value for 

echelon 1; the second example benefits fi-om a negative value. Both examples are for simple 

two echelon problems and references to time between orders (TBO) refer to the average 

calculated value for all items on an echelon, with TBO calculated using the standard (classical) 

definition, see Maes and Van Wassenhove [10], and unmodified setup and fiill value holding 

costs. 

(1) In this example, the capacity constraint on the lower echelon is relatively tight, and 

the time between orders (TBO) on the top (first) echelon is relatively high (e.g., 5). On the 

top echelon, without applying a Fj value, a significant amount of production is scheduled 

early in the production plan due to its high TBO. This then results in a capacity overload in 
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the early production periods of the second echelon. Consequently, the application of a 

positive F j value to the items of the top echelon will tend to reduce batching and shift the 

lower echelon dependent demand to the right. Thus, the opportunity of locating a feasible 

multiple echelon solution is increased. 

(2) In this example, the KCC modification was not used and TBO is constant (e.g., 3 and 

3) or increasing (e.g., 3 to 4). On the top echelon, by applying a negative Fi value, the 

amount of batching will increase (i.e., lot sizes mcrease in size) and production will be shifted 

to the left. This will tend to increase actual costs for the top echelon, but overall costs over 

both echelons may decrease. More specifically, in this situation the application of a negative 

Fj value will tend to have the following impacts on the top echelon; (a) actual holding costs 

will tend to mcrease; (b) setup costs will tend to decrease; and (c) the net (holding and setup) 

costs will tend to increase. However, associated with these impacts, the lower (second) 

echelon's net holding and setup cost tends to be reduced. Consequently, overall actual costs 

may decrease in spite of increased costs on echelon 1. 

Our preliminary multiple echelon heuristic testing using the echelon holding cost 

adjustment factors (Fj) provided some insight on when their use was most beneficial and their 

typical order of magnitude and sign (i.e., positive or negative). We found that these aspects 

were related to whether or not we initially used the KCC modification procedure, whether the 

problem is capacitated and whether the TBO of the various echelons was increasing or 

decreasing. We will first address the issue of when one can expect a benefit from using Fj 

values. When binding lower echelon capacity constraints are present, then the use of positive 

Fj values often leads to a feasible solution being identified and/or lower overall solution costs. 

But, when the KCC modification is used and the problem is relatively loosely constrained (or 

non-capacitated), little benefit results fi*om using non-zero Fj values. Also, with the use of 

KCC modifications, little benefit appears to result from the use of negative Fj values. 
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However, when the KCC modification is not used, our heuristic generally benefits fi:om the 

use of non-zero Fj values, regardless of capacity constraint. 

Regarding the general magnitude and sign of the actual Fj values that typically yield the 

lowest cost (feasible) solution, the tighter the capacity constraints on lower echelons, the 

greater the positive magnitude of the most beneficial value(s) of the Fj values on the higher 

echelon(s). Furthermore, when the KCC modification was not used, the magnitude of the Fj 

values are generally less positive than when it was used. In fact, for problems without binding 

capacity restrictions, when the KCC modification was not used, the "best' Fj values (all) tend 

to be negative. 

Preliminary testing of our multiple echelon heuristic experimented with using three single 

level heuristic solution methodologies. The three heuristics are: (1) TTM, see Trigeiro et al. 

[13]; (2) DS, see Dixon and Silver [7]; and (3) MG, see McCoy and Gemmill [11,12]. These 

three were selected based on single level testing reported in the McCoy and Gemmill 

references listed above. Briefly, the TTM heuristic proved to be a reliable Lagrangean 

relaxation based heuristic suitable for problems with or without setup times and costs. Its 

main drawback is its requirement of rather large computation times for medium and large 

scale problems. The DS heuristic was included in preliminary testing because it is a well 

known, good heuristic for solving problems without setup times. Finally, the MG heuristic 

was included because it is a quick heuristic that is capable of handling lot sizing problems with 

or without setup time. On problems without setup time, it tended to outperform the DS 

heuristic with respect to solution quality and, on large scale problems, it was generally faster. 

Also, in comparison testing with the TTM heuristic, particularly on large scale problems, its 

solution quality was quite good and its computation times were significantly lower. For 

example, as reported in McCoy and Gemmill [11], for 216 single echelon, capacitated 

problems that varied in size fi-om 250 to 4000 items and fi-om 25 to 50 production periods, the 
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MG heuristic's average solution costs were just 0.86% higher than the TTM heuristic's costs 

and its computation time was 0.026 that of the TTM heuristic. 

Based on our preliminary, multiple echelon testing, we choose to use both the TTM and 

MG heuristics as part of our MELS heuristic. That is, in its sequential solution of single 

echelon problems, our heuristic uses the TTM heuristic when the single echelon problem is 

smaller than 40 items, and it uses the MG heuristic for larger problems. Thus, the solution of 

a multiple echelon problem may involve the use of both the TTM and MG heuristics. The 

rationale behind using both was that the TTM heuristic tends to produce better quality 

solutions (particularly for very small problems), and for small problems the extra 

computational penalty is not great. The MG is then used on all other problems in order to 

take advantage of its computational speed and relatively good solution quality. 

Our MELS heuristic allows the user to determine if the KCC cost modifications are 

mcorporated. Thus, we were able to test the effectiveness of the procedure on randomly 

generated problems. When it is chosen for use, the procedure is called by the heuristic just 

once, before the start of the sequential echelon by echelon solution procedure and has an 

insignificant impact on computation times. Our preluninary test results indicated that using 

the KCC procedure yielded significant cost improvements on relatively loosely capacitated 

problems, and minor improvements on tightly constrained problems. However, more formal 

testing was desired. 

For non-capacitated problems, when the KCC modification procedure is used, an Fj value 

of 0.0 for j=l,..., M (the total number of levels) is satisfactory. However, except for this one 

case, the "best" choice of individual Fj values for a particular, previously unstudied, problem is 

not known. Consequently, for all problems that are capacitated or where the KCC cost 

modification was not used, the choice of Fj values is a combinatorial optimization problem. 

We choose to solve this problem by using a modified SA algorithm. 
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Prior to a description of the SA stochastic search process, a brief description of the 

MELS heuristic's method of determining an initial search starting point is as follows. The 

MELS heuristic first attempts to solve the lot sizing problem with the use of Fj values equal to 

0.0 (for j=l,...,M). If a feasible solution was not achieved using these Fj values, ^Fj values 

are incremented by 1.0 and the process repeats until either a feasible solution is found or the 

Fj level reaches 40.0. If at the 40.0 level a feasible solution has not yet been found, then the 

heuristic terminates. If a feasible solution was found, its associated Fj values are the starting 

point of the S A procedure 

Modified Simulated Annealing Search Procedure 

S A is a stochastic search technique that was discovered as a result of simulating the 

cooling of materials from higher to lower level energy states. It has received considerable 

attention since 1983, when JCirkpatrick et al. [8] published the seminal paper on the topic. 

Since then, it has been proven a powerful technique for solving combinatorial optimization 

problems. It is essentially a relatively simple technique that constructs a sequence of solutions 

(a walk) through the set of permissible solutions called the state space. Four basic elements 

are required: (1) a state space definition and an initial starting state v^thin the space; (2) a 

transition mechanism that defines neighboring states (vdthin the state space) and allows the 

procedure to consider moving from the current state to one of the randomly selected 

neighboring states; (3) an acceptance mechanism and associated control parameters to 

determine whether the potential move to the neighboring state should be accepted; and (4) a 

termmation mechanism to end the search. Each of these four elements will now be discussed 

with respect the MELS heuristic: 
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(1) State space and initial starting state: The state space for the Fj values at each echelon 

is the collection of discrete points starting at 0.0 and extending in the negative and positive 

directions in increments of 0.1 (i.e.,... ,-0.3, -0.2, -0.1,0.0,0.1,0.2, 0.3,...). This state 

space was chosen based on preliminary testing. The initial starting state is determined as 

follows: starting with the Fj values associated with the first feasible solution obtained as 

previously described (e.g., {1.0,1.0,1.0,1.0} for a 4 echelon problem), the heuristic starts 

with the lowest (bottom) echelon and decreases the Fj value by the hcjncr amount provided 

in (2) below and solves the resulting multiple echelon lot sizing problem. This repeats as long 

as cost improvements result or until the Fj value reaches 0.0 or less. Then, this process 

repeats for each higher level echelon and terminates with the Fj values associated with the best 

solution cost obtained. These Fj values are the starting point for the stochastic search process 

described below. 

(2) Transition mechanism: To move from the current state to a neighboring state, the 

procedure picks one of the echelons at random and then randomly moves a holding cost 

increment, or hcjncr, in either the positive or negative direction. For example, if hcjncr is 

set to be 0.2, an acceptable move is firom {1.0,1.0,1.0,1.0} to {1.0,1.0, 0.8,1.0}). 

The value of hc jncr is determined by the initial starting point where the heuristic first 

found a feasible solution (prior to SA). The rationale behind the determination of the hcjncr 

is to allow, for capacitated problems, approximately 5 to 10 possible points between the value 

of the initial feasible Fj value and 0.0. Specifically, Table 1 provides this information. Note: 

non-capacitated problems always found an initial feasible solution with all Fj values equal to 

0.0 ~ thus, for these problems, a hcjncr of 0.2 was always used. 
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Table 1: Determination of the Initial Holding Cost Increment Value 

Initial Feasible Solution he incr Initial Feasible Solution he incr 

2.0^ 4.0 

4.0^ 8.0 

8.0 ^ 16.0 

< 2.0 0.2 

0.4 

0.8 

1.6 

16.0 < 24.0 

24.0 ^ 32.0 

S 32.0 

3.2 

4.8 

6.4 

(S') Acceptance mechanism and associated control parameters: InourSA 

implementation, if the candidate set of Fj values results in an infeasible solution to the multiple 

echelon problem, the move is rejected. Conversely, all moves to neighboring candidate states 

are accepted if the actual muhiple echelon solution cost associated with the candidate set of Fj 

values is less than the actual cost of the current set of Fj values. The acceptance of all moves 

that result in a cost improvement is consistent with local search techniques, e.g., hill climbing. 

However, to avoid becoming trapped in a local minimum, the SA procedure also accepts some 

candidate states even if their associated solution costs are higher than the current state ~ this 

allows S A to explore other regions of the state space and thus is more likely to identify the 

global minimum, regardless of the starting state. 

If Zg is the value of the solution cost associated with the current state of Fj values and Z^ 

is the value of the cost associated with the potential neighboring state, then the candidate 

solution is accepted if Zn^Zg or if 

where p is the probability of accepting the neighboring state and is randomly selected from the 

U(0,1) distribution, and temp/ is a control parameter (discussed in more detail below). 
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If the candidate move is accepted, then ZQ is set equal to Z^. If the candidate move is not 

accepted, then the ZQ remains the same. Regardless, the transition mechanism is called again 

and the process repeats. 

Essentially, the value of temp/ is determined by the user defined initial (non-negative) 

starting temperature (Tg) and a cooling schedule (CS). The determination of both the Tq and 

CS is somewhat an art, but the principle idea is to systematically and stochastically explore the 

significant regions of the state space and gradually reduce the amount of upward hill climbing 

that is allowed so that one gradually settles into the most promising state space region and 

finishes the SA search at a low temperature that prohibits moves to higher cost states. Thus, 

depending upon the Tq and CS used, the SA approach incorporates varying amounts of both 

global and local search. 

For our MELS heuristic, we used a CS described as follows: 

temp/ = To * /-I. for / = 1,..., MAX 

where: temp/ = specific temperature at each temperature level / 

MAX ~ maximum number of temperature levels considered 

/ = cooling factor 

Additionally, at each temperature level (temp/, / = l,...,MAX), we consider up to L candidate 

moves, also sometimes referred to as a 'chain length' of i. However, if during the search, the 

heuristic accepts 0.75*L moves at a specific temperature level, it immediately proceeds to the 

next (lower) temperature level. 

In our SA implementation, the values of Tq, Ji, MAX and L vary depending on the size of 

the problem and whether it is capacitated on at least one echelon. Problem size is defined 

based on the total number of items in the product structure, and is as follows: (a) 

small/medium - less than 500 total items; and (b) large - 500 or more items. These CS values 

are provided in Table 2. 
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Table 2: SA Cooling Schedules 

Prob. Size Capacitated 

Small/Medium Yes 

To_ .J_ MAX JL 

3.0 .84 16 16 

Large 

Large 

No 

Yes 

3.0 .84 16 16 

1.0 .80 5 20 

At any point in the S A procedure, if at a specific temperature level, no candidate 

solutions are accepted or if after 4 different temperature levels, a cost improvement of 1% or 

more was not obtained, the procedure immediately proceeds to the temperature level 

associated WahMAX-l (e.g., 16-3=13). Preliminary testmg indicated that this reduces run 

times while tending to not have a major impact on solution quality. Additionally, regardless of 

how many temperature levels were examined by the SA procedure, at Xh&MAX-'i level, the 

best combination of Fj values obtained so far are recalled and the hcjncr value previously 

used is reduced by 50%. This allows the SA procedure to "fine tune" the Fj values within the 

most promising local region. 

Finally, because the SA solution technique often revisits states (particularly at lower 

temperatures), the MELS heuristic maintains a record of the Fj value combinations already 

visited along vdth their associated solution cost. Thus, the heuristic avoids recalculating the 

multiple echelon cost — it simply recalls the cost fi'om its records. 

(4) Termination Mechanism: The SA procedure ends at the conclusion of the Zth 

candidate move of the last (lowest) temperature level. At this pomt the best solution value is 

recalled. 
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Problem Generator 

The problem generator used to test the MELS heuristic is a modified version of the 

generator used by Diaby et al. [6] for then- large scale, single echelon testing. This generator 

produces problems of user specified size (number of items and production periods) with 

randomly generated item setup cost, setup time and holding cost, demands and various levels 

of capacity constraint tightness. It was twice modified. The first set of modifications are 

related to single echelon problem testing described in McCoy and Gemmill [11,12]. These 

modifications; (a) allowed for variable item processing time and lumpy demands typical of 

MRP systems; (b) provided the user the capability to specify target (average) TBO values; (c) 

provided a stronger correlation between setup cost and tune; and (d) provided more realistic 

capacity profiles (the original generator tended to lump a disproportionate amount of capacity 

into the first production periods). 

The second set of modifications is related to multiple echelon problems. Our final 

problem generator allows the user to specify the total number of echelons desired, the number 

of items on the first echelon, the maximum number of predecessors that each successor 

(higher echelon) item may have and the probability of each predecessor. Thus, the generator 

is capable of producing problems that are: large or small, single or multiple echelon, tightly or 

loosely constrained, with serial or randomly generated assembly product structures, with or 

without item setup times and a target, average TBO value for each echelon. This last 

capability is important due to the critical importance that TBO structure has on multiple 

echelon lot sizing. To provide the user with an understanding of how the generator uses the 

target TBO values supplied by the user, the following is offered: 
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(a) Each item i on each echelon k of the multiple echelon problem receives a randomly 

generated item echelon holding cost, ek^j = 2.0 • RV, where RV is randomly chosen from the 

U(0,1) distribution. 

(b) The total holding cost, hcj^^i, for each particular item i on each echelon k is calculated, 

starting at the bottom echelon and summing up the individual echelon holding costs for each 

of its predecessors. 

(c) Then the setup cost for each item i on echelon k, scj^i, is determined as follows: 

TBOk^i = Target^ + Z]^i * (Targetjj. / 8.0) 

5oy = 0.5*hCk,i*5k_i*CIBOk,i)2 

where Dj^ j = average item demand per period for item i on echelon k 

2k,i ~ normally distributed random variable for item i on echelon k 

Targetjj = target TBO for each echelon k (user provided value) 

TBOk^i = TBO level ofitem ion echelon k 

The FORTRAN code associated with the problem generator described above is available 

from the authors. 

Heuristic Test Plan 

The two general objectives of testing the MELS heuristic were associated with testing the 

effectiveness of using the KCC cost modification and the holding cost adjustment factors on: 

(1) large, non-capacitated problems with randomly generated, assembly, product 

structures and various TBO profiles (e.g., constant, increasing, decreasing, and random); and 

(2) capacitated problems of various size, capacity profiles, and level of setup tune. 

The testing related to (1) allowed us to compare our results to previous results obtained 

by Blackburn and \(Qllen, [4, 5], for smaller problems v^th a small set of less complex product 
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structures and constant or less variable item demand. The capacitated testing associated with 

(2) is, to our knowledge, the most extensive of its kind. 

All testing of the MELS heuristic used randomly generated problems that incorporated 

variable item production times and lumpy (MRP) demand. Additionally, the number of 

echelons considered varied from 3 to 5 and the number of periods in the production horizon 

was fixed at 18 for all problems generated and tested. All testing was conducted on a 

DecStation 5000 workstation. 

As part of our testing, for each problem generated, we twice applied the MELS heuristic. 

The first application did not use the KCC modification; the second application did. For each 

application to a capacitated problem, we recorded the solution cost and computational time 

correspondmg to three points in the solution process: (a) at the completion of the initial 

attempt to solve the problem with all Fj values equal to 0.0; (b) at the completion of finding an 

initial feasible solution; and (c) at the completion of the heuristic. Problems were discarded 

for which neither approaches (with and without KCC) found a feasible solution (For a 

discussion of the difBculties of determining if feasibility exists for a particular problem, see 

Trigeiro et al. [13], Kuik et al. [9] and Billmgton et al. [2].) For non-capacitated problems, 

points (a) and (b) are the same, i.e., a feasible solution was always obtained at point (a). 

Details of our testing associated with the two objectives are provided in the next two 

sections. 

Non-Capacitated Testing 

Testing used four sets of randomly generated, large problems, with each set associated 

with a TBO profile. All problems were 5 echelon, assembly problems with 20 items on the 

first echelon. The TBO profiles are as follows: 
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TBO PROFILES 

Echelon 

1 

2 
3 

4 

5 

Constant 

3.0 

3.0 

3.0 

3.0 

3.0 

Increasing Decreasing Random 

1.0 4.0 U(2,5) 

2.0 3.5 U(2,5) 

3.0 3.0 U(2,5) 

4.0 2.5 U(2,5) 

5.0 2.0 U(2,5) 

where U(2,5) represents the uniform distribution between 2.0 and 5.0. For the 'random' TBO 

profile, the TBO for each item on each echelon was randomly chosen from the U(2,5) 

distribution. Thus, significant differences exist between the TBOs of items on a single 

echelon. 

A total of 10 assembly problems was randomly generated for each of the four TBO 

profiles. Each of the 40 assembly problems allowed up to 3 predecessors for each successor 

(higher echelon) item, with the probability distribution of predecessors being: 1 ~ 0.25; 2 ~ 

0.50; and 3 ~ 0.25. Consequently, the expected value of the total number of items in each 

problem is 620 (or 31 items per each of the 20 end items). Finally, since setup times have no 

impact due to the lack of capacity constraints, they were not included in the problems 

generated. 

Due to the absence of capacity constraints, the solution of these problems did not require 

the use of smoothing algorithms, upward adjustments, or improvement algorithms. 

Consequently, since both the MG and TTM procedures use the WW dynamic progranmiing 

procedure, the solution procedure used by the MELS heuristic to solve these problems was 

equivalent to using WW (with modified holding and setup costs) for every item on each 

echelon. 

Results of the non-capacitated testing are provided in Table 3. 
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Table 3; Non-Capacitated Testing ~ Average Solution Costs 

TBO Profile Baseline Cost* With Fj & SA With KCC Onlvr**> 

Constant 1000 831 (16.9%; 802-880) 822(17.8%; 796-874) 

Increasing 1000 841 (15.9%; 825-904) 810 (19.0%; 801-874) 

Decreasing 1000 900 (10.0%; 868-954) 896 (10.4%; 864-950) 

Random 1000 850 (15.0%; 832-918) 842 (15.8%; 824-897) 

* Baseline Cost: Without KCC modification and all Fj values equal to 0.0. 
** Average percent reduction firom the Baseline Cost; Range of solution costs 

The resuhs in Table 3 indicate that both the KCC modification and the use of holding cost 

adjustment factors (Fj) combined with SA provides significant cost reductions in comparison 

with using neither the KCC or Fj values. However, the computation time associated with 

using the KCC cost adjustment is relatively insignificant ~ in comparison to the Baseline 

approach (without using KCC or "Fj and SA'), which required about 3 CPU seconds, the 

increase in computation time was less than 1 second of CPU time. In contrast, the use of Fj 

and SA required about 190 CPU seconds. Consequently, the use of the KCC cost adjustment 

is recommended for non-capacitated problems. And, if the KCC cost modification is 

incorporated, there is no need for the use of Fj and SA. Our testuig indicated that with the 

KCC cost modification, the additional use of Fj and SA requires a significant computation 

increase in order to sometimes achieve very minor cost improvements. Nevertheless, the test 

results summarized in Table 3 indicate that if the KCC modification is not used, the use of Fj 

values and S A does incorporate multiple echelon information into higher echelon lot sizing 

decisions and results in significant cost savings. This ability is critical for success in the 

commonly occurring, capacitated, multiple echelon situations where the KCC cost 

modification procedure, by itself, has difBculty. 
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Capacitated Testing 

The capacitated testing used randomly generated, three to five echelon problems with 

random TBOs (U[2,5]) for each item on each echelon, 20 end items and the same number of 

potential predecessors (3), and probability distribution, as was used in the non-capacitated 

testing. Thus, the size of these problems had an expected value of 140 items, 300 items or 

620 items, for the 3,4 or 5 echelon problems, respectively. Additionally, this testing used 

problems of varying capacity profiles and level of setup time. The capacity profiles associated 

with the ten cases considered are provided in Table 4. 

Table 4: Capacity Profiles 

Case 
A B C D E F G H I J 

Echelon 1 T U u T L M M M S s 
Echelon 2 U T u T L M M M s s 
Echelon 3 U U T T L M M M s s 
Echelon 4 - - - - - - M M - s 
Echelon 5 - - - - - - - M - -

where, T (tight) represents greater than 85% capacity utilization, M (moderate) represents 70 

to 85% utilization, L (loose) represents 60 to 70 percent utilization, U represents 

unconstrained and S represents problems with a significant level of setup time and moderate 

capacity utilization. Consequently, problems for cases A to H did not include setup time, and 

those for cases I and J did. 

For each of the ten cases, six problems were generated. And, for the 12 problems with 

setup time (cases I and J), the target setup time utilization was 15%, i.e., in the final (best) 

solution obtained, 15% of the total capacity is used to setup for production. The actual setup 

time utilization averaged 16.5% and 15.1% for cases I and J, respectively. 
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For cases A to C, we explored the impact of a tight capacity constraint on a single 

echelon of a three echelon problem. Cases D to H were used to investigate the impacts of 

tight (case D), loose (case E) or moderate (case F, G and H) capacity constraints on each of 

their echelons. Additionally, cases F, G and H also provide an indication of the solution 

quality and CPU impacts resulting from various problem sizes (3 to 5 echelons). Finally, cases 

I and J consider 3 and 4 echelon problems that contain significant levels of setup time. 

Table 5 provides an overview of the quality of solution costs obtained for each of the ten, 

capacitated cases considered. In Table 5, the baseline cost is associated with the mitial 

feasible solution obtained without the KCC modification. This baseline cost was assigned a 

value of 1000. The last three columns of the table provide the average and range of solution 

values obtained for (1) the initial (feasible) solution obtained using the KCC modification; (2) 

the best solution obtained as a result of holding cost factor optimization (SA) when the KCC 

modification was not used; and (3) the best solution obtained after optimization when the 

KCC modification was used. 

For cases A, B and C, where capacity restrictions were placed on only one echelon, a 

quick examination of the Table S information indicates that the use of the KCC modification, 

on average, resulted in slight solution cost improvements in both the initial feasible solution 

and the final (best) solution obtained. However, a more detailed analysis that included paired-

t statistical tests indicates, at a 95% confidence level, the following: (1) If the problem is only 

constrained on the top echelon (case A), the use of the KCC modification provides a 

statistically significant benefit, but further attempts at cost reduction using S A provide little 

benefit; and (2) If the problem is contrained on the middle or lowest echelon (i.e., case B or 

C), then the KCC modification does not provide a statistically significant benefit, but the use 

of S A provides a significant reduction in total muhiple echelon costs (from the initial feasible 
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solution). Additionally, with respect to problem feasibility, for cases B and C, upward 

adjustment of lot sizes were required on all problems. 

For Cases A to C, the total CPU time of the MELS heuristic averaged 100 seconds when 

the KCC modification was used. Its computation tune was 8 seconds (8%) lower when KCC 

was not used. Of the total time, less than 1 second was required to obtain the KCC modified 

costs ~ the remaining 7 (plus) seconds of the difference was related to different amounts of 

production smoothing and upward lot size adjustments required to obtain feasibility at each 

iteration of the MELS heuristic. 

Table 5: Solution Cost Quality 

Initial Solution * Final Best Solution Cost ** 

Case w/o KCC with KCC w/o KCC with KCC 

A 1000 *** 956 (928-986) 961 (934-983) 954 (927-975) 

B 1000 978 (895-1007) 981 (955-999) 951 (864-988) 

C 1000 987 (883-1046) 950 (785-993) 920(854-1018) 

D 1000 930 (820-1053) 877 (839-936) 879 (806-995) 

E 1000 944 (869-997) 934 (899-976) 911 (827-964) 

F 1000 981 (861-1053) 945 (865-995) 933 (843-994) 

G 1000 920 (831-988) 908 (814-991) 870 (773-948) 

H 1000 959 (873-1040) 904 (854-968) 895 (808-952) 

I 1000 968 (862-1171) 916 (862-975) 910 (771-1043) 

J 1000 967 f875-1096^ 886 r848-922^ 874 f820-926'> 

AVE. 1000 959 (870-1044) 927 (865-974) 910 (829-980) 

* Initial feasible solution obtained (prior to optimization of Fj values). 
** At the completion of the MELS heuristic (including SA). 

Baseline cost is without the use of KCC and is scaled to equal 1000. 
( ) Range of values 

With respect to cases D to J (7 cases and 42 problems), where capacity restrictions are 

present on each echelon, the results indicate that with the KCC modification, approximately 
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4.7% better (lower) initial feasible solutions were obtained. However, after the Fj values are 

improved using SA, the difference shrinks to 1.4%. That is, the best (final) solutions obtained 

with KCC are 1.4% better, on average, than the best solutions obtained without KCC. 

Cases F, G and H all involve moderate capacity restrictions on each of their echelons (3, 

4, or 5, respectively). The results for these cases clearly indicate that the SA optimization of 

the Fj values yields greater benefit when the number of echelons is the greatest (cases G and 

H). Overall, the average cost reduction associated with using both the KCC modification and 

SA is 10.1% (versus the baseline solution). 

For cases I and J (both with setup time), the results indicate that the use of S A also 

results in greater benefits when the number of echelons is greater. For case J (4 echelons), the 

amount of cost reduction associated with using both KCC and SA is about 12.6% lower than 

the baseline cost. 

For cases D to J, the average computation times per problem, in CPU (DecStation 5000) 

seconds, are provided in Table 6. 

Table 6: CPU Times 

Initial Feasible Solution * Final (Total') Time ** 

Case w/o KCC with KCC w/o KCC with KCC 

D 18 (6-46) 34 (4-68) 403 (196-598) 392 (136-581) 

E 6(3-9) 8 (4-13) 239 (107-314) 277(100-418) 

F 13 (4-26) 21 (6-35) 261 (131-392) 281 (162-416) 

G 13 (5-18) 25 (11-44) 570 (232-998) 574 (412-1000) 

H 42 (16-86) 119(54-215) 631 (300-954) 718 (293-1202) 

I 14 (3-27) 19 (5-41) 296 (134-983) 310 (85-489) 

J 18 ri3-36^ 42 (24-80^ 777 (540-1193'> 705 (290-1146') 

AVE. 18 (7-35) 38 (15-71) 454 (244-798) 465 (211-750) 

* Initial feasible solution obtained (prior to optimization of Fj values). 
** At the completion of the MELS heuristic (mcluding SA). 
() Range of CPU computation times 
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The computation times for cases D to F, the cases without setup time but with capacity 

constraints on each of their three echelons, indicate that the tighter the capacity constraints 

(i.e., case D), the greater the CPU requirements. This is consistent with expectations. 

Cases F (3 echelons), G (4 echelons) and H (5 echelons) all incorporate moderate 

capacity impacts and random item TBOs. Additionally, the three cases used the cooling 

schedules (CS) provided earlier (F and G used the same CS and H used a "quicker" CS). The 

above times for these cases show the obvious increase in times required as problem size 

increases. However, for even the five echelon case H (which averaged 655 items) with the 

use of the KCC modification, an average of less than 2 and 12 minutes of CPU time was 

required to obtmn initial feasible solutions and the final (best) solutions, respectively. 

CPU times for cases I and J, in contrast to similar sized cases without setup time (cases F 

and G ~ 3 and 4 echelon problems, respectively), indicate that significant levels of setup time 

increase the amount of time required. This is not surprising given the additional amount of 

problem complexity imposed by the setup time. 

The information in Table 7 summarizes the percentage cost reduction fi-om the initial 

baseline solution without the KCC modification to the final (best) solutions obtained after 

completion of SA, with and without the KCC modification. 

Table 7: Percent Cost Reduction From Initial Solution * 
Case: _A. _B_ _C__D_ .E F_ _G_ ^ _I J_ AVE 

To Final w^ KCC 3.6 1.9 5.0 12.3 6.6 5.5 9.2 9.6 8.4 11.4 7.35 

To Final adth KCC 4.6 4.9 8.0 12.1 8.9 6.7 13.0 10.5 9.0 12.6 9.03 
* Without KCC modification 

"When the KCC modification was not used, the inclusion of the SA procedure provided 

statistically significant cost reduction benefits on all ten cases. Furthermore, the results in 

Tables 5 and 7 generally indicate that the SA procedure, with or without the KCC 



www.manaraa.com

8S 

modification, provides the greatest cost improvement on more tightly constrained problems 

with deeper product structures, e.g., cases D, H and J. However, a visual examination of the 

information in these tables indicates that when the MELS heuristic (including SA) is applied to 

capacitated problems, the use of the KCC modification does not always result in the lowest 

costs. The best example of this is case D, the case with tight capacity constraints on each of 

its three echelons. To further investigate this, a paired-t statistical test of the last two columns 

of Table 5 was conducted., usmg a 95% confidence level. These two columns are associated 

with the best final solutions obtained after SA, without or with the KCC modification. A 

paired-t test on all 60 problems included in Cases A to J indicated that the final best solutions 

with the KCC modification are statistically better than the solutions without the KCC 

modifications. A similar test on the 24 problems included in cases E, F, G and H also 

indicated the same conclusion. These four cases do not include setup time and have loose or 

moderate capacity restrictions on each of their echelons. However, it is important to note that 

for the 18 problems included in Cases D, I and J (problems which are tightly constrained or 

have both setup times and moderate capacity restrictions), the same type of test indicated that 

the use of the KCC modification produced no statistically significant difference in solution 

quality. 

The above information combined with that of the non-capacitated testing (Table 3) 

indicates that the KCC modification provides significant benefit on problems that are 

constrained moderately, loosely, or not at all. However, after SA improvements to holding 

cost adjustment values (Fj), the KCC modification, on average, provides an insignificant 

benefit on relatively tightly constrained problems, including those that are only moderately 

constrained, but also include significant setup times. Nevertheless, because the KCC 

modification typically requires such a small amount of computation time, its inclusion as an 

option in the MELS heuristic methodology is warranted. For example, on the most difficult 
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problems (those with relatively tight capacity constraints, particularly those with setup times), 

the MELS heuristic could be easily modified to seek an initial feasible solution, both with and 

without the KCC modification. Then, the heuristic could proceed with the S A procedure 

using the combination of adjusted setup and holding costs that yielded the best initial feasible 

solution. 

Conclusion 

This paper described a practical approach for solving commonly occurring multiple 

echelon production lot sizing problems. Our approach of using lot sizing feedback 

information to higher echelons coupled with holding cost adjustment factors provides a 

practical means of significantly increasing the likelihood of finding feasible solutions to 

realistically sized, capacitated problems. Additionally, it was shown that significant cost 

improvements can be obtained through the use of a modified SA procedure to explore the 

combinatorial optimization of the holding cost adjustment factors. Finally, our research 

results indicate that the KCC cost modification provides significant benefit on unconstrained 

or loosely/moderately constrained problems and, on average, tends to provide insignificant 

cost benefits on more tightly constrained problems, particularly if the problems include 

significant levels of setup time. 
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GENERAL CONCLUSIONS 

First, an extension to a fast and simple heuristic for solving multi-item, multi-period, 

single-echelon, dynamic, capacitated lot-sizing problems was presented and applied to eight 

problems found in the literature. Each of these problems did not include setup time. It was 

shown that the Extended Dbcon-Silver (EDS) Heuristic provided better solutions than the 

original Dixon and Silver heuristic on seven of the eight problems and, on the five problems 

with available optimal solutions, it generated solutions that hit the optimal on two of the 

problems and deviated firom the optimal on the other three by at most 0.8 percent. Therefore, 

it is a reasonable alternative for users wishing to increase their lot-sizing solution accuracy at a 

minor computational expense. 

Second, the MG heuristic was presented. This heuristic is a fast heuristic for solving 

single echelon CLS problems, with or without setup time. Also presented was large-scale 

testing that evaluated the performance of the MG heuristic and three other leading heuristics 

on realistic CLS problems. Testing used 216 randomly generated problems that included 

several groupings of problem sizes as well as varied levels of capacity utilization and average 

TBO. One-half the problems tested were problems with significant levels of setup time. 

Test results were favorable for the MG heuristic. On the randomly generated problems 

without setup times, overall results of the testing (for both high and low TBO problems) 

indicate that the MG heuristic yielded cost solutions 1.03% better, on average, than the next 

best fast heuristic (DS), and it did so at a reduced computational expense. Furthermore, on 

the same problems, the MG heuristic achieved solutions that averaged just 0.47% above the 

solutions achieved by the computationally complex heuristic tested (TTM), and on average it 

obtained the solutions at 0.027 the computation time. 
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On the problems with setup time, the MG heuristic also performed well. In comparison 

with TTM, it generated solutions that were on average (for both low and high TBO problems) 

1.24% higher, at only 0.024 the average computation time. 

Overall, on all 216 problems tested, the MG heuristic achieved feasible cost solutions 

just 0.86% higher than the TTM heuristic. Furthermore, for even the largest problems tested 

(4000 items and 25 periods), the computation time for the MG heuristic averaged (over 24 

problems) about one minute of CPU time on a DECstation 5000/200 workstation. This 

indicates that the MG heuristic is fast enough and accurate enough for most "real world" CLS 

problems, with or without setup time. 

Third, further discussion and test results associated with the MG heuristic and the 

random problem generator were presented. The test results were favorable for the MG 

heuristic. On average, for all 27 problems tested (15 from the liturature and 12 randomly 

generated), its solutions were 2.1% better than those of the well-known DS heuristic and just 

0.7% above the solutions achieved by the computationally complex TTM heuristic. And, on 

the larger, randomly generated problems, the MG heuristic required about 21% and 3% of the 

DS and TTM heuristics' computation time, respectively. These results seem to indicate that 

the MG heuristic is fast enough and accurate enough to be used in realistically sized, "real life" 

production environments. 

Fourth, a practical approach for solving commonly occurring multiple echelon 

production lot sizing problems was described and tested. It was shown that the newly 

developed, sequential, top-down approach of using lot sizing feedback information to higher 

echelons coupled v^th holding cost adjustment factors provides a practical means of 

significantly increasing the likelihood of finding feasible solutions to realistically sized, 

capacitated problems. Additionally, it was shown that significant cost improvements can be 

obtained through the use of a modified SA procedure to explore the combinatorial 
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optimization of the holding cost adjustment factors. Fmally, the research results indicate that 

the KCC cost modification provides significant benefit on unconstrained or loosely/moderately 

constrained problems and, on average, tends to provide insignificant cost benefits on more 

tightly constrained problems, particularly if the problems include significant levels of setup 

time. 

Fifth, it is believed that the multiple echelon, random problem generator discussed in 

Chapter IV provides researchers with a practical means of generating realistic lot sizing 

problems. This generator permits the study of problems with various capacity constraint 

profiles, setup time levels, item demand schedules, product structures, etc.. 

While it is recognized that many unresolved CLSP research issues still remain, it is 

hoped that the research discussed in this dissertation contributed to reducing the gap between 

industry practice and academic research activity. 
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